Асимптотика гипергеометрических последовательностей — различия между версиями
Iksiygrik (обсуждение | вклад) м  | 
				Iksiygrik (обсуждение | вклад)  м  | 
				||
| Строка 61: | Строка 61: | ||
Поскольку ряд <tex>\sum\limits_{k=1}^{\infty} \cfrac{1}{k^2}</tex> сходится, первое слагаемое в правой части последнего неравенства при больших <tex>n</tex> можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции <tex>\cfrac{1}{[x]}</tex> на отрезке <tex>[n, n+m]</tex>,    | Поскольку ряд <tex>\sum\limits_{k=1}^{\infty} \cfrac{1}{k^2}</tex> сходится, первое слагаемое в правой части последнего неравенства при больших <tex>n</tex> можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции <tex>\cfrac{1}{[x]}</tex> на отрезке <tex>[n, n+m]</tex>,    | ||
| − | [[Файл:InkedOiGdtVITsP10_LI.jpg|350px|thumb|  | + | [[Файл:InkedOiGdtVITsP10_LI.jpg|350px|thumb|right|График функции <tex>y = \cfrac{1}{[x]}</tex> на отрезке <tex>[n, n + m]</tex>]]  | 
Версия 20:08, 21 мая 2018
| Определение: | 
| Последовательность, в которой отношение двух соседних членов равно отношению многочленов степени , где , называется гипергеометрической (англ. hypergeometric sequence). | 
Вычисление асимптотики
| Лемма: | 
Пусть последовательность  положительных чисел такова, что  для всех достаточно больших , причем . Тогда  растет как  для некоторой постоянной .  | 
| Доказательство: | 
| 
 Утверждение леммы эквивалентно тому, что существует предел .  Для доказательства существования предела применим критерий Коши[1], т. е. будем доказывать, что рассматриваемая последовательность фундаментальна[2]. Перепишем отношение в виде , где 
 Прологарифмировав отношение , получаем . Посмотрим на функцию . Выпишем начальные члены разложения функции в ряд в точке : для некоторой константы . Это разложение - самый существенный элемент доказательства. Именно коэффициент (отличный от нуля по предположению леммы) при линейном члене указывает на присутствие сомножителя в асимптотике. Для логарифма функции имеем 
 Поэтому для некоторой постоянной при достаточно маленьком имеем . В частности, если достаточно велико, то , , 
 . Теперь интересующее нас выражение в левой части неравенства можно оценить с помощью системы и неравенства треугольника[3]: 
 
 
 
 
 
 . Поскольку ряд сходится, первое слагаемое в правой части последнего неравенства при больших можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции на отрезке , 
  | 
Замечание: Предположения леммы не позволяют определить величину константы . Действительно, умножив последовательность на произвольную постоянную , мы получим новую последовательность с тем же отношением последовательных членов, константа для которой увеличивается в раз
Примеры
Пример. Для чисел Каталана имеем
Поэтому для некоторой постоянной .
Пример. Найдем асимптотику коэффициентов для функции , где вещественно. В ряде случаев эта асимптотика нам уже известна, например, при . Согласно определению функции имеем
.
Если — целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае начиная с некоторого номера все коэффициенты ряда имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться леммой при
Поэтому . Например, коэффициенты функции ведут себя как , и мы получаем повторный вывод ассимптотики для чисел Каталана.