Быстрое вычисление членов линейной рекуррентной последовательности — различия между версиями
Dogzik (обсуждение | вклад) |
Dogzik (обсуждение | вклад) |
||
Строка 3: | Строка 3: | ||
Самый простой способ сделать это {{---}} последовательно считать каждый <tex>a_i</tex>, пока <tex>i</tex> не сравняется с <tex>n</tex>. Однако этот способ не самый эффективный, ведь он, очевидно, требует <tex>O(n \cdot k)</tex> времени. Хочется уметь как-то быстрее решать эту задачу. Рассмотрим два способа это сделать. | Самый простой способ сделать это {{---}} последовательно считать каждый <tex>a_i</tex>, пока <tex>i</tex> не сравняется с <tex>n</tex>. Однако этот способ не самый эффективный, ведь он, очевидно, требует <tex>O(n \cdot k)</tex> времени. Хочется уметь как-то быстрее решать эту задачу. Рассмотрим два способа это сделать. | ||
− | == | + | == Умножение матриц (за <tex>O(k^3 \cdot logn)</tex>) == |
Заметим, что линейные рекурренты хорошо выражаются через матрицы. Запишем наши первые <tex>k</tex> членов последовательности в столбик. | Заметим, что линейные рекурренты хорошо выражаются через матрицы. Запишем наши первые <tex>k</tex> членов последовательности в столбик. | ||
Строка 43: | Строка 43: | ||
Используя быстрое возведения в степень второй пункт будет тратить <tex>O(k^3 \cdot logn)</tex> времени, умножение же в третьем пункте выполняется за <tex>O(k^2)</tex>. Итого мы получили алгоритм за <tex>O(k^3 \cdot logn)</tex>. | Используя быстрое возведения в степень второй пункт будет тратить <tex>O(k^3 \cdot logn)</tex> времени, умножение же в третьем пункте выполняется за <tex>O(k^2)</tex>. Итого мы получили алгоритм за <tex>O(k^3 \cdot logn)</tex>. | ||
+ | |||
+ | == Связь с многочленами (за <tex>O(k^2 \cdot logn)</tex>) == | ||
+ | |||
+ | Вспомним, что по [[Теорема о связи между рациональностью производящей функции и линейной рекуррентностью задаваемой ей последовательности|теореме о связи рекурренты и многочленов]] наша реккурента эквивалента некому многочлену <tex>A(t) = \dfrac{P(t)}{Q(t)}</tex>, при это <tex>Q(t) = 1 - c_1 \cdot t - c_2 \cdot t^2 - \cdots - c_k \cdot t^k</tex>. Домножим числитель и знаменатель на <tex>Q(-t)</tex>. Новый знаменатель <tex>R(t) = Q(t) \cdot Q(-t)</tex>. При этом <tex>r_n = \sum\limits_{i = 0}^{n} q_i \cdot q_{n - i} \cdot (-1)^{n - i}</tex> |
Версия 19:40, 11 июня 2018
Пусть нам дана линейная реккурента размера . А именно: , а так же заданы первых членов последовательности. Требуется уметь вычислять произвольное .
Самый простой способ сделать это — последовательно считать каждый
, пока не сравняется с . Однако этот способ не самый эффективный, ведь он, очевидно, требует времени. Хочется уметь как-то быстрее решать эту задачу. Рассмотрим два способа это сделать.Умножение матриц (за )
Заметим, что линейные рекурренты хорошо выражаются через матрицы. Запишем наши первые
членов последовательности в столбик. Так же выпишем следующую матрицу перехода:Заметим, что умножив
слева на , мы получим столбик следующего вида: Аналогично, домножив слева на , получимПродолжая так для любого
, мы получим столбик , состоящий из подряд идущий членов последовательности, начиная с . Пользуясь ассоциативность произведения матриц, можно записать, что . Из этого соотношения вытекает алгоритм вычисления произвольного :- Инициализировать матрицы и
- Возвести матрицу в степень
- Посчитать как и взять из него
Используя быстрое возведения в степень второй пункт будет тратить
времени, умножение же в третьем пункте выполняется за . Итого мы получили алгоритм за .Связь с многочленами (за )
Вспомним, что по теореме о связи рекурренты и многочленов наша реккурента эквивалента некому многочлену , при это . Домножим числитель и знаменатель на . Новый знаменатель . При этом