Быстрое вычисление членов линейной рекуррентной последовательности — различия между версиями
Dogzik (обсуждение | вклад) |
Dogzik (обсуждение | вклад) |
||
| Строка 49: | Строка 49: | ||
Отсюда мы получаем, что многочлен <tex>R(t)</tex> имеет вид: <tex>R(t) = 1 + r_2 \cdot t^2 + r_4 \cdot t^4 + \cdots + r_{2k} \cdot t^{2k}</tex>. Однако вспомним о связи с рекуррентой, а именно мы получили, что <tex>a_n = -r_2 \cdot a_{n - 2} - r_4 \cdot a_{n - 4} - \cdots - r_{2k} \cdot a_{n - 2k}</tex> | Отсюда мы получаем, что многочлен <tex>R(t)</tex> имеет вид: <tex>R(t) = 1 + r_2 \cdot t^2 + r_4 \cdot t^4 + \cdots + r_{2k} \cdot t^{2k}</tex>. Однако вспомним о связи с рекуррентой, а именно мы получили, что <tex>a_n = -r_2 \cdot a_{n - 2} - r_4 \cdot a_{n - 4} - \cdots - r_{2k} \cdot a_{n - 2k}</tex> | ||
| + | |||
| + | Иными словами мы получили новое рекуррентное соотношение для данной последовательности, где каждый элемент зависит от элементов с номерами, имеющими такую же чётность, что номер исходного. То есть по сути наша последовательность разделилась на две независимых: с чётными и нечётными номерами. Можно сказать, что мы теперь ищем не <tex>a_n</tex> из исходной последовательности, а <tex>a'_{n~div~2}</tex> из подпоследовательности элементов, имеющих ту же чётность, что и <tex>n</tex>. Заметим, что этот процесс можно проделывать далее пока <tex>n \geqslant k</tex>, ведь в итоге искомый окажется среди <tex>k</tex> первых. Всё, что нам нужно,{{---}} поддерживать первые <tex>k</tex> элементов для каждой новой последовательности. | ||
| + | |||
| + | Исходя из всего вышесказанного получаем алгоритм: | ||
| + | |||
| + | <code> | ||
| + | '''while''' (n <= k) { | ||
| + | count a[k], a[k + 1], ..., a[2k - 1]; | ||
| + | Q(t) = Q(t) * Q(-t); | ||
| + | leave a[i] with (i % 2 == n % 2); | ||
| + | Q: t^2 -> t; | ||
| + | n = n div 2; | ||
| + | } | ||
| + | return a[n]; | ||
| + | </code> | ||
Версия 20:29, 11 июня 2018
Пусть нам дана линейная реккурента размера . А именно: , а так же заданы первых членов последовательности. Требуется уметь вычислять произвольное .
Самый простой способ сделать это — последовательно считать каждый , пока не сравняется с . Однако этот способ не самый эффективный, ведь он, очевидно, требует времени. Хочется уметь как-то быстрее решать эту задачу. Рассмотрим два способа это сделать.
Умножение матриц (за )
Заметим, что линейные рекурренты хорошо выражаются через матрицы. Запишем наши первые членов последовательности в столбик. Так же выпишем следующую матрицу перехода:
Заметим, что умножив слева на , мы получим столбик следующего вида: Аналогично, домножив слева на , получим
Продолжая так для любого , мы получим столбик , состоящий из подряд идущий членов последовательности, начиная с . Пользуясь ассоциативность произведения матриц, можно записать, что . Из этого соотношения вытекает алгоритм вычисления произвольного :
- Инициализировать матрицы и
- Возвести матрицу в степень
- Посчитать как и взять из него
Используя быстрое возведения в степень второй пункт будет тратить времени, умножение же в третьем пункте выполняется за . Итого мы получили алгоритм за .
Связь с многочленами (за )
Вспомним, что по теореме о связи рекурренты и многочленов наша реккурента эквивалента некому многочлену , при это . Домножим числитель и знаменатель на . Новый знаменатель . При этом . Нетрудно заметить, что при нечётных коэффициенты обращаются в , a .
Отсюда мы получаем, что многочлен имеет вид: . Однако вспомним о связи с рекуррентой, а именно мы получили, что
Иными словами мы получили новое рекуррентное соотношение для данной последовательности, где каждый элемент зависит от элементов с номерами, имеющими такую же чётность, что номер исходного. То есть по сути наша последовательность разделилась на две независимых: с чётными и нечётными номерами. Можно сказать, что мы теперь ищем не из исходной последовательности, а из подпоследовательности элементов, имеющих ту же чётность, что и . Заметим, что этот процесс можно проделывать далее пока , ведь в итоге искомый окажется среди первых. Всё, что нам нужно,— поддерживать первые элементов для каждой новой последовательности.
Исходя из всего вышесказанного получаем алгоритм:
while (n <= k) {
count a[k], a[k + 1], ..., a[2k - 1];
Q(t) = Q(t) * Q(-t);
leave a[i] with (i % 2 == n % 2);
Q: t^2 -> t;
n = n div 2;
}
return a[n];