Быстрое вычисление членов линейной рекуррентной последовательности — различия между версиями
Dogzik (обсуждение | вклад) |
Dogzik (обсуждение | вклад) (→Связь с многочленами (за O(k^2 \cdot logn))) |
||
Строка 56: | Строка 56: | ||
Исходя из всего вышесказанного получаем алгоритм: | Исходя из всего вышесказанного получаем алгоритм: | ||
− | < | + | get_nth(n, a[], <tex>Q</tex>) { |
− | + | '''while''' (n <tex>\geqslant</tex> k) { | |
− | + | calculate a[k], a[k + 1], <tex>\cdots</tex>, a[2k - 1]; | |
− | + | <tex>Q = Q(t) \cdot Q(-t)</tex>; | |
− | + | leave a[i] with (i % 2 == n % 2); | |
− | + | <tex>Q = Q(\sqrt{t})</tex> | |
− | + | n = n div 2; | |
+ | } | ||
+ | return a[n]; | ||
} | } | ||
− | |||
− | |||
Вычисление <tex>a[k], a[k + 1], \cdots , a[2k - 1]</tex> занимает <tex>O(k^2)</tex> времени, ибо их всего <tex>k</tex>, а каждый считается за <tex>O(k)</tex>. Умножение многочленов длины порядка <tex>k</tex> также занимает <tex>O(k^2)</tex> времени. Итераций внешнего цикла будет <tex>O(logn)</tex> в силу того, что мы делим <tex>n</tex> на <tex>2</tex> каждый раз. | Вычисление <tex>a[k], a[k + 1], \cdots , a[2k - 1]</tex> занимает <tex>O(k^2)</tex> времени, ибо их всего <tex>k</tex>, а каждый считается за <tex>O(k)</tex>. Умножение многочленов длины порядка <tex>k</tex> также занимает <tex>O(k^2)</tex> времени. Итераций внешнего цикла будет <tex>O(logn)</tex> в силу того, что мы делим <tex>n</tex> на <tex>2</tex> каждый раз. |
Версия 14:41, 12 июня 2018
Пусть нам дана линейная реккурента размера . А именно: , а так же заданы первых членов последовательности. Требуется уметь вычислять произвольное .
Самый простой способ сделать это — последовательно считать каждый
, пока не станет равен . Однако этот способ не самый эффективный, ведь он, очевидно, требует времени. Хочется уметь как-то быстрее решать эту задачу. Рассмотрим два способа это сделать.Умножение матриц (за )
Заметим, что линейные рекурренты хорошо выражаются через матрицы. Запишем наши первые
членов последовательности в столбик. Так же выпишем следующую матрицу перехода:Заметим, что умножив
слева на , мы получим столбик следующего вида: Аналогично, домножив слева на , получимПродолжая так для любого
, мы получим столбик , состоящий из подряд идущих членов последовательности, начиная с . Пользуясь ассоциативностью произведения матриц, можно записать, что . Из этого соотношения вытекает алгоритм вычисления произвольного :- Инициализировать матрицы и
- Возвести матрицу в степень
- Посчитать как и взять из него
Используя быстрое возведение в степень во втором пункте, мы будем тратить
времени. Умножение же в третьем пункте выполняется за .Итого мы получили алгоритм за
.Связь с многочленами (за )
Вспомним, что по теореме о связи рекурренты и многочленов наша реккурента эквивалента некому многочлену , при этом . Домножим числитель и знаменатель на . Новый знаменатель . При этом . Нетрудно заметить, что при нечётных коэффициенты обращаются в , a .
Отсюда мы получаем, что многочлен
имеет вид: . Однако вспомним о связи с рекуррентой, а именно мы получили, чтоИными словами мы получили новое рекуррентное соотношение для данной последовательности, где каждый элемент зависит от элементов с номерами, имеющими такую же чётность, что номер исходного. То есть по сути наша последовательность разделилась на две независимых: с чётными и нечётными номерами. Можно сказать, что мы теперь ищем не
из исходной последовательности, а из подпоследовательности элементов c номерами, имеющими ту же чётность, что и . Заметим, что этот процесс можно проделывать далее пока , ведь в итоге искомый элемент окажется среди первых. Всё, что нам нужно,— поддерживать первые элементов для каждой новой последовательности.Исходя из всего вышесказанного получаем алгоритм:
get_nth(n, a[],) { while (n k) { calculate a[k], a[k + 1], , a[2k - 1]; ; leave a[i] with (i % 2 == n % 2); n = n div 2; } return a[n]; }
Вычисление
занимает времени, ибо их всего , а каждый считается за . Умножение многочленов длины порядка также занимает времени. Итераций внешнего цикла будет в силу того, что мы делим на каждый раз.Итого мы получили алгоритм, работающий за