Быстрое вычисление членов линейной рекуррентной последовательности — различия между версиями
Dogzik (обсуждение | вклад) |
Dogzik (обсуждение | вклад) (→Умножение матриц (за O(k^3 \cdot \log n))) |
||
Строка 21: | Строка 21: | ||
\end{pmatrix}</tex> | \end{pmatrix}</tex> | ||
− | Заметим, что умножив <tex> | + | Заметим, что умножив <tex>T</tex> на <tex>A_0</tex> слева, мы получим столбик <tex>A_1</tex> следующего вида: |
<tex>A_1 = T \cdot A_0 = \begin{pmatrix} | <tex>A_1 = T \cdot A_0 = \begin{pmatrix} | ||
a_{k}\\ | a_{k}\\ | ||
Строка 28: | Строка 28: | ||
a_1 | a_1 | ||
\end{pmatrix}</tex> | \end{pmatrix}</tex> | ||
− | Аналогично, домножив <tex> | + | Аналогично, домножив <tex>T</tex> на <tex>A_1</tex>, получим |
<tex>A_2 = T \cdot A_1 = \begin{pmatrix} | <tex>A_2 = T \cdot A_1 = \begin{pmatrix} | ||
a_{k + 1}\\ | a_{k + 1}\\ |
Версия 21:46, 14 июня 2018
Пусть нам дана линейная рекуррентная последовательность порядка . А именно: при , а так же заданы первых членов последовательности. Требуется уметь вычислять произвольное .
Самый простой способ сделать это — последовательно считать каждый
, пока не станет равен . Однако этот способ не самый эффективный, он, очевидно, требует времени, но можно сделать это быстрее. Рассмотрим два способа это сделать.Содержание
Умножение матриц (за )
Заметим, что линейные рекурренты хорошо выражаются через матрицы. Запишем наши первые
членов последовательности в столбик. Так же выпишем следующую матрицу перехода:Заметим, что умножив
на слева, мы получим столбик следующего вида: Аналогично, домножив на , получимПродолжая так для любого
, мы получим столбик , состоящий из подряд идущих членов последовательности, начиная с . Пользуясь ассоциативностью произведения матриц, можно записать, что . Из этого соотношения вытекает алгоритм вычисления произвольного :- Инициализировать матрицы и
- Возвести матрицу в степень
- Посчитать как и взять из него
Используя быстрое возведение в степень во втором пункте, мы будем тратить
времени. Умножение же в третьем пункте выполняется за .Итого мы получили алгоритм за
.Связь с многочленами (за )
Вспомним, что по теореме о связи рекурренты и многочленов наша реккурента эквивалента некому многочлену , при этом . Домножим числитель и знаменатель на . Новый знаменатель . При этом . Нетрудно заметить, что при нечётных коэффициенты обращаются в , a .
Отсюда мы получаем, что многочлен
имеет вид: . Однако вспомним о связи с рекуррентой, а именно мы получили, чтоИными словами мы получили новое рекуррентное соотношение для данной последовательности, где каждый элемент зависит от элементов с номерами, имеющими такую же чётность, что номер исходного. То есть по сути наша последовательность разделилась на две независимых: с чётными и нечётными номерами. Можно сказать, что мы теперь ищем не
из исходной последовательности, а из подпоследовательности элементов c номерами, имеющими ту же чётность, что и . Заметим, что этот процесс можно проделывать далее пока , ведь в итоге искомый элемент окажется среди первых. Всё, что нам нужно,— поддерживать первые элементов для каждой новой последовательности.Исходя из всего вышесказанного получаем алгоритм:
get_nth(n, a[],) { while (n k) { for (i = k 2k - 1) { a[i] = -q[j] a[i - j] } filter a[i] with (i mod 2 == n mod 2) n = n div 2 } return a[n] }
Вычисление
занимает времени, ибо их всего , а каждый считается за . Умножение многочленов длины порядка также занимает времени. Итераций внешнего цикла будет в силу того, что мы делим на каждый раз.Итого мы получили алгоритм, работающий за
См. также
- Теорема о связи между рациональностью производящей функции и линейной рекуррентностью задаваемой ей последовательности
- Производящая функция