Быстрое вычисление членов линейной рекуррентной последовательности — различия между версиями
Dogzik (обсуждение | вклад) (→Связь с многочленами (за O(k^2 \cdot \log n))) |
Dogzik (обсуждение | вклад) (→Связь с многочленами (за O(k^2 \cdot \log n))) |
||
Строка 58: | Строка 58: | ||
get_nth(n, a[], <tex>Q</tex>) | get_nth(n, a[], <tex>Q</tex>) | ||
'''while''' n <tex>\geqslant</tex> k | '''while''' n <tex>\geqslant</tex> k | ||
− | '''for''' i = k<tex>\cdots</tex>2k - 1 | + | '''for''' i = k <tex>\cdots</tex> 2k - 1 |
a[i] = <tex>\sum\limits_{j = 1}^{k}</tex> -q[j] <tex>\cdot</tex> a[i - j] | a[i] = <tex>\sum\limits_{j = 1}^{k}</tex> -q[j] <tex>\cdot</tex> a[i - j] | ||
<tex>R = Q(t) \cdot Q(-t)</tex> | <tex>R = Q(t) \cdot Q(-t)</tex> |
Версия 22:32, 14 июня 2018
Пусть нам дана линейная рекуррентная последовательность(далее ЛРП) порядка . А именно: при , а так же заданы первых членов последовательности. Требуется уметь вычислять произвольное .
Самый простой способ сделать это — последовательно считать каждый
, пока не станет равен . Однако этот способ не самый эффективный, он, очевидно, требует времени, но можно сделать это быстрее. Рассмотрим два способа это сделать.Содержание
Умножение матриц (за )
Заметим, что ЛРП хорошо выражаются через матрицы. Запишем наши первые
членов последовательности в столбик. Так же выпишем следующую матрицу перехода:Заметим, что умножив
на , мы получим столбик следующего вида: Аналогично, домножив на , получимПродолжая так, для любого целого неотрицательного
, мы получим столбик , состоящий из подряд идущих членов последовательности, начиная с . Пользуясь ассоциативностью произведения матриц, можно записать, что . Из этого соотношения вытекает алгоритм вычисления произвольного :- Инициализировать матрицы и
- Возвести матрицу в степень
- Посчитать как и взять из него
Используя быстрое возведение в степень во втором пункте, мы будем тратить
времени. Умножение же в третьем пункте выполняется за .Итого мы получили алгоритм, работающий за
.Связь с многочленами (за )
Вспомним, что по теореме о связи ЛРП и многочленов наша ЛРП эквивалента некому отношению многочленов , при этом . Домножим числитель и знаменатель на . Новый знаменатель . При этом . Нетрудно заметить, что при нечётных коэффициенты обращаются в , a .
Отсюда мы получаем, что многочлен
имеет вид: . Однако вспомним о связи с ЛРП, тогда мы получили, чтоИными словами мы получили новое рекуррентное соотношение для данной последовательности, где каждый элемент зависит от элементов с номерами, имеющими такую же чётность, что номер исходного. То есть по сути наша последовательность разделилась на две независимых: с чётными и нечётными номерами. Можно сказать, что мы теперь ищем не
из исходной последовательности, а из подпоследовательности элементов c номерами, имеющими ту же чётность, что и . Заметим, что этот процесс можно проделывать далее пока , ведь в итоге искомый элемент окажется среди первых. Всё, что нам нужно,— поддерживать первые элементов для каждой новой последовательности.Исходя из всего вышесказанного получаем алгоритм:
get_nth(n, a[],) while n k for i = k 2k - 1 a[i] = -q[j] a[i - j] filter a[i] with (i mod 2 == n mod 2) n = n div 2 return a[n]
Вычисление
занимает времени, ибо их всего , а каждый считается за . Умножение многочленов длины порядка также занимает времени. Итераций внешнего цикла будет в силу того, что мы делим на каждый раз.Итого мы получили алгоритм, работающий за
См. также
- Теорема о связи между рациональностью производящей функции и линейной рекуррентностью задаваемой ей последовательности
- Производящая функция