Расчёт вероятности поглощения в состоянии — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (См. также)
м (Косметические изменения)
Строка 13: Строка 13:
 
*<tex>\mathtt{absorbing[i]}</tex> — является ли i-е состояние поглощающим
 
*<tex>\mathtt{absorbing[i]}</tex> — является ли i-е состояние поглощающим
  
  '''function''' getAbsorbingProbability(absorbing: boolean[n], G: float[n][n])
+
  '''float[]''' getAbsorbingProbability(absorbing: boolean[n], G: float[n][n]):
     float probability[n]
+
     '''float''' probability[n]
 
     '''for''' i = 0 '''to''' n - 1
 
     '''for''' i = 0 '''to''' n - 1
       prob = 0
+
       '''int''' prob = 0
 
       '''if''' absorbing[i]
 
       '''if''' absorbing[i]
 
           '''for''' j = 0 '''to''' nonabs - 1
 
           '''for''' j = 0 '''to''' nonabs - 1
Строка 23: Строка 23:
 
           prob /= n
 
           prob /= n
 
       probability[i] = prob
 
       probability[i] = prob
     return probability
+
     '''return''' probability
  
 
==См. также==
 
==См. также==

Версия 23:43, 19 июня 2018

Поглощающее(существенное) состояние цепи Маркова — состояние с вероятностью перехода в самого себя [math]p_{ii}=1[/math]. Составим матрицу [math]G[/math], элементы которой [math]g_{ij}[/math] равны вероятности того, что, выйдя из [math]i[/math], попадём в поглощающее состояние [math]j[/math].

Теорема:
[math] G = N \cdot R [/math], где [math]N[/math] — фундаментальная матрица, и [math]R[/math] — матрица перехода из несущественных состояний в существенные.
Доказательство:
[math]\triangleright[/math]

Пусть этот переход будет осуществлён за [math]r[/math] шагов: [math]i[/math][math]i_{1}[/math][math]i_{2}[/math][math]\ldots[/math][math]i_{r-1}[/math] → j, где все [math]i, i_{1}, \ldots i_{r-1}[/math] являются несущественными. Тогда рассмотрим сумму [math]\sum\limits_{\forall(i_{1} \ldots i_{r-1})} {p_{i, i_{1}} \cdot p_{i_{1}, i_{2}} \cdot \ldots \cdot p_{i_{r-1}, j}} = Q^{r-1} \cdot R[/math], где [math]Q[/math] — матрица переходов между несущественными состояниями, [math]R[/math] — из несущественного в существенное.

Матрица [math]G[/math] определяется их суммированием по всем длинам пути из i в j: [math]G = \sum\limits_{r = 1}^{\infty}{Q^{r-1} \cdot R} = (I + Q + Q^{2} + Q^{3} + \ldots) \cdot R = NR[/math], т.к. [math](I + Q + Q^2 + \ldots) \cdot (I - Q) = I - Q + Q - Q^{2} + \ldots = I[/math], а фундаментальная матрица марковской цепи [math]N = (I - Q)^{-1}[/math]
[math]\triangleleft[/math]

Псевдокод

Выведем ответ: в [math]\mathtt{i}[/math]-ой строке вероятность поглощения в [math]\mathtt{i}[/math]-ом состоянии. Естественно, для несущественного состояния это [math]\mathtt{0}[/math], в ином случае [math]\mathtt{p_i=((\sum\limits_{k=1}^{n} G[k][j]+1)/n}[/math] где [math]\mathtt{j}[/math] — номер соответствующий [math]\mathtt{i}[/math]-ому состоянию в матрице [math]\mathtt{G}[/math] (т.е. под которым оно располагалось в матрице [math] \mathtt{R} [/math] т.е. значение [math]\mathtt{position[i]}[/math]). Прибавлять [math]\mathtt{1}[/math] нужно т.к. вероятность поглотиться в [math]\mathtt{i}[/math]-ом поглощающем состоянии, оказавшись изначально в нем же равна [math]\mathtt{1}[/math].

  • [math]\mathtt{probability[i]}[/math] — вероятность поглощения в [math]\mathtt{i}[/math]-ом состоянии
  • [math]\mathtt{absorbing[i]}[/math] — является ли i-е состояние поглощающим
float[] getAbsorbingProbability(absorbing: boolean[n], G: float[n][n]):
   float probability[n]
   for i = 0 to n - 1
      int prob = 0
      if absorbing[i]
         for j = 0 to nonabs - 1
            prob += G[j][position[i]]
         prob++
         prob /= n
      probability[i] = prob
   return probability

См. также

Источники информации