Расчёт вероятности поглощения в состоянии — различия между версиями
| Arimon (обсуждение | вклад) м (Косметические изменения) | Arimon (обсуждение | вклад)  м (→Псевдокод:  исправлен псевдокод) | ||
| Строка 16: | Строка 16: | ||
|      '''float''' probability[n] |      '''float''' probability[n] | ||
|      '''for''' i = 0 '''to''' n - 1 |      '''for''' i = 0 '''to''' n - 1 | ||
| − |         ''' | + |         '''float''' prob = 0 | 
|         '''if''' absorbing[i] |         '''if''' absorbing[i] | ||
|            '''for''' j = 0 '''to''' nonabs - 1 |            '''for''' j = 0 '''to''' nonabs - 1 | ||
Версия 00:40, 20 июня 2018
Поглощающее(существенное) состояние цепи Маркова — состояние с вероятностью перехода в самого себя . Составим матрицу , элементы которой равны вероятности того, что, выйдя из , попадём в поглощающее состояние .
| Теорема: | 
| , где  — фундаментальная матрица, и  — матрица перехода из несущественных состояний в существенные. | 
| Доказательство: | 
| Пусть этот переход будет осуществлён за шагов: → → → → → j, где все являются несущественными. Тогда рассмотрим сумму , где — матрица переходов между несущественными состояниями, — из несущественного в существенное.Матрица определяется их суммированием по всем длинам пути из i в j: , т.к. , а фундаментальная матрица марковской цепи | 
Псевдокод
Выведем ответ: в -ой строке вероятность поглощения в -ом состоянии. Естественно, для несущественного состояния это , в ином случае где — номер соответствующий -ому состоянию в матрице (т.е. под которым оно располагалось в матрице т.е. значение ). Прибавлять нужно т.к. вероятность поглотиться в -ом поглощающем состоянии, оказавшись изначально в нем же равна .
- — вероятность поглощения в -ом состоянии
- — является ли i-е состояние поглощающим
float[] getAbsorbingProbability(absorbing: boolean[n], G: float[n][n]):
   float probability[n]
   for i = 0 to n - 1
      float prob = 0
      if absorbing[i]
         for j = 0 to nonabs - 1
            prob += G[j][position[i]]
         prob++
         prob /= n
      probability[i] = prob
   return probability
См. также
- Марковская цепь
- Подсчет количества поглощающих состояний и построение матриц переходов марковской цепи
- Фундаментальная матрица
- Теорема о поглощении
- Математическое ожидание времени поглощения
