Очередь Майкла и Скотта — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Корректная lock-free реализация)
Строка 1: Строка 1:
{{В разработке}}
 
 
'''Очередь Майкла и Скотта''' ''(Michael-Scott Queue)'' - алгоритм построения lock-free очереди. Впервые был предложен Maged M. Michael и  Michael L. Scot в статье <ref>[http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf? Simple, Fast, and Practical Non-Blocking and BlockingConcurrent Queue Algorithms]</ref>.
 
'''Очередь Майкла и Скотта''' ''(Michael-Scott Queue)'' - алгоритм построения lock-free очереди. Впервые был предложен Maged M. Michael и  Michael L. Scot в статье <ref>[http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf? Simple, Fast, and Practical Non-Blocking and BlockingConcurrent Queue Algorithms]</ref>.
 
== Структура очереди ==
 
== Структура очереди ==

Версия 23:15, 3 октября 2018

Очередь Майкла и Скотта (Michael-Scott Queue) - алгоритм построения lock-free очереди. Впервые был предложен Maged M. Michael и Michael L. Scot в статье [1].

Структура очереди

Очередь моделируется с помощью односвязного списка. Каждый элемент списка ([math]Node[/math]) содержит ссылку на хранимые в нём данные и указатель на следующий элемент списка (который можно менять атомарно).

case class Node(val data: Int, val next: AtomicReference<Node>)

Если узел [math]node[/math] является последним в списке, то его [math]next[/math] указывает на [math]null[/math].

Сама очередь состоит из двух указателей: на голову [math]H[/math] и на хвост [math]T[/math], которые можно менять атомарно. Удаление из очереди происходит со стороны головы, добавление - со стороны хвоста.

Узел списка, на который указывает [math]H[/math], является фиктивным (dummy). Данные, хранимые в этом узле, не имеют значения. Изначально очередь состоит из одного dummy-элемента, на который указывают [math]T[/math] и [math]H[/math].

class Queue
    dummy = new Node(null, new AtomicReference<Node>(null))
    head = new AtomicReference<Node>(dummy)
    tail = new AtomicReference<Node>(dummy)

// TODO; картинка

Будем поддерживать следующий инвариант: в нашей очереди [math]H[/math] указывает на узел, находящийся не правее узла, на который указывает [math]T[/math]

Идея реализации

Удаление элемента

Для удаления элемента необходимо переместить указатель [math]H[/math] на следующую в списке вершину.

def pop(): Int
    if (H.next == null):
        throw new EmptyException()
    H = H.next
    return H.data //H - новый фиктивный элемент

Добавление элемента

Создадим новый узел списка, и добавим его в конец очереди.

def push(x: Int):
    newTail = new Node(x, new AtomicReference<Node>(null))
    T.next = newTail //Добавление новой вершины в очередь
    T = T.next //Изменение хвоста списка

Многопоточная реализация

Будем при всех изменениях указателей на вершины списка использовать [math]CAS[/math] (то есть при изменении [math]T[/math], [math]H[/math], и [math]T.next[/math])

Удаление элемента

Для удаления элемента необходимо переместить указатель [math]H[/math] на следующую в списке вершину.

def pop(): Int
    while (true): //Поток пытается в CAS - цикле поменять указатель на H, пока не получится
        head = H.get()
        if (head.next == null):
            throw new EmptyException()
        newHead = head.next.get()
        if (CAS(H, head, nextHead)):
            return newHead.data

Добавление элемента

Создадим новый узел списка, и добавим его в конец очереди.

def push(x: Int):
    newTail = new Node(x, new AtomicReference<Node>(null))
    while (true): //Поток пытается в CAS - цикле поменять T.next, пока не получится
        tail = T.get()
        curTail = tail.next
        if (CAS(curTail, null, newTail)): //Поток пытается добавить элемент в конец очереди
            break
   while (true): //Поток пытается в CAS - цикле поменять указатель на T, пока не получится
        tail = T.get()
        nextTail = tail.next.get()
        if (CAS(T, tail, nextTail)):
            break

При данной реализации мы сталкиваемся со следующей проблемой

Описание проблемы

Рассмотрим ситуацию, при которой два потока [math]A[/math] и [math]B[/math] добавляют в очередь элементы [math]elem[/math] и [math]elem'[/math]. Рассмотрим следующую последовательность действий:

  1. Поток [math]A[/math] добавляет в очередь новую вершину, изменяя [math]T.next[/math], но не успевает изменить [math]T[/math] так, чтобы он указывал на только что добавленную вершину.
  2. Планировщик операционной системы усыпляет поток [math]A[/math].
  3. Поток [math]B[/math] собирается добавить новую вершину в очередь, но не может этого сделать, так как постоянно проваливает операцию [math]CAS(T.next, null, newTail)[/math] (T.next не указывает на [math]null[/math], так как поток [math]A[/math] на шаге [math]1[/math] добавил в очередь новую вершину, но не передвинул [math]T[/math])
  4. Поток [math]B[/math] не сможет добавить в очередь новую вершину (а следовательно, завершить операцию [math]push[/math]), до тех пор, пока планировщик операционной системы не разбудит поток [math]A[/math], и поток [math]A[/math] не завершит добавление (то есть не передвинет [math]T[/math] на вершину, добавленную на шаге [math]1[/math].)

Следовательно, у такой очереди нет гарантии прогресса, и этот алгоритм не lock-free.

Корректная lock-free реализация

Основная идея

Нельзя выполнить добавление элемента в очередь и перемещение [math]T[/math] атомарно. В таком случае, пусть остальные потоки помогают перенести указатель на хвост очереди. Если поток видит непустой [math]T.next[/math] (то есть если он провалил [math]CAS(tail.next, null, newTail)[/math]), то он должен помочь перенести [math]T[/math], то есть выполнить [math]CAS(T, tail, tail.next.get())[/math] однократно. Если [math]CAS[/math] выполнен успешно, то хвост перемещён успешно (а значит, наш поток должен вернуться к добавлению нового элемента). Если же он выполнен неудачно, то это значит, что [math]T[/math] уже не указывает на [math]tail[/math], а значит, другой поток уже успешно переместил хвост (а значит, наш поток должен вернуться к добавлению нового элемента).

Реализация [math]push[/math]

def push(x: Int):
    newTail = new Node(x, new AtomicReference<Node>(null))
    while (true): //CAS-цикл
        tail = T.get()
        if (CAS(tail.next, null, newTail)):
            /*
            Если T указывает на последний добавленный элемент и 
            получилось добавить ещё один элемент в хвост, 
            пробуем передвинуть T. Если не получилось передвинуть T,
            значит, другой поток сделал это за нас, завершаем работу.
            Если получилось - то мы сами передвинули T, завершаем работу
            */
            CAS(T, tail, newTail)
            return
        else:
            /*
            Если T - не последний добавленный элемент элемент, то передвигаем T на последний элемент
            Если этого сделать не получилось, значит, это сделал другой поток.
            Если получилось - значит, наш поток передвинул T на текущий последний элемент.
            В любом случае, возвращаемся в начало CAS-цикла, чтобы завершить добавление в очередь новой вершины.
            */
            CAS(T, tail, tail.next.get())

Проблема с [math]pop[/math]

Если мы попытаемся воспользоваться написанной выше реализацией метода [math]pop[/math], инвариант очереди не будет соблюдён. В силу особенностей реализации метода [math]push[/math], в некоторые моменты [math]T[/math] может указывать не на добавленный последним элемент, а на добавленный предпоследним. В таком случае, с помощью последовательности удалений можно добиться того, что [math]H[/math] будет указывать на последний добавленный элемент, а [math]T[/math] - на предпоследний. Таким образом, [math]H[/math] будет указывать на вершину правее чем та, на которую указывает [math]T[/math], то есть инвариант очереди будет нарушен

Корректная реализация [math]pop[/math]

Основная проблема предыдущей реализации состоит в том, что в методе [math]pop[/math] при перемещении [math]H[/math], мы никак не следили за положением [math]T[/math]. Эту проблему можно исправить следующим образом: пусть в методе [math]pop[/math] рабочий поток будет помогать переместить указатель [math]T[/math] на последний добавленный элемент (аналогично действиям рабочего потока в методе [math]push[/math]).

Для определения того, указывает ли [math]T[/math] на последний добавленный элемент, воспользуемся следующим соображением: если [math]T[/math] указывает на последний добавленный элемент, то [math]T.get().next == '''null'''[/math], так как за последним добавленным элементом нет других элементов. В противном случае [math]T[/math] указывает на предпоследний добавленный элемент, и его надо передвинуть на последний добавленный.

def pop(): Int
    newTail = new Node(x, new AtomicReference<Node>(null))
    while (true): //CAS-цикл
        head = H.get() //Сохраняем в локальные переменные текущие голову и хвост, а так же следующий за головным элемент
        tail = T.get()
        nextHead = head.next.get()
        if (head == tail):
            /*
            Если head и tail совпадают, это ещё не означает, что очередь пуста.
            Возможно, что мы просто не успели подвинуть tail. Если tail.next не null,
            то мы просто не успели подвинуть tail при добавлении.
            */
            if (nextHead == null):
                // Следующего элемента нет, очередь пуста
                throw new EmptyException()
            else:
                /*
                push не успел подвинуть T, наш поток должен помочь
                tail == head => tail.next == head.next
                */
       else:
           // Очередь гарантированно не пуста, следующий элемент существует
           result = nextHead.data
           if (CAS(H, head, nextHead)):
               /*
               Если получилось переставить голову, то фиктивным элементом стал
               H.next, результат - данные, которые в нём лежали. Если не получилось - 
               возвращаемся в начало метода и пробуем ещё раз
               */
               return result

Примечания

Источники информации

  • Maurice Herliny & Nir Shavit - The Art of Multiprocessor programming, стр 230