Верхние и нижние оценки хроматического числа — различия между версиями
(→Верхняя оценка длиной максимального нечетного цикла) |
(→Верхняя оценка длиной максимального нечетного цикла) |
||
| Строка 5: | Строка 5: | ||
|proof= | |proof= | ||
Опишем на графе следующий алгоритм раскраски: | Опишем на графе следующий алгоритм раскраски: | ||
| − | *Из произвольной вершины <tex>v</tex> | + | *Из произвольной вершины <tex>v</tex> запустим алгоритм поиска в глубину. Пусть <tex>T</tex> {{---}} дерево обхода глубина графа <tex>G</tex> с корнем в вершине <tex>v</tex>. |
*Произвольную вершину <tex>u</tex>, покрасим в цвет <tex>dist(v,u)</tex> <tex> \bmod </tex> <tex> (\Delta + 1)</tex>, где <tex>dist(v,u)</tex>{{---}} расстояние между вершинами <tex>u,v</tex> в графe <tex>T</tex>. | *Произвольную вершину <tex>u</tex>, покрасим в цвет <tex>dist(v,u)</tex> <tex> \bmod </tex> <tex> (\Delta + 1)</tex>, где <tex>dist(v,u)</tex>{{---}} расстояние между вершинами <tex>u,v</tex> в графe <tex>T</tex>. | ||
Докажем от противного, что после выполнения описанного алгоритма граф <tex>G</tex> будет правильно раскрашен. | Докажем от противного, что после выполнения описанного алгоритма граф <tex>G</tex> будет правильно раскрашен. | ||
Версия 19:53, 15 октября 2018
Содержание
Верхняя оценка длиной максимального нечетного цикла
| Лемма (оценка хроматического числа длиной максимального нечётного цикла): |
Пусть — произвольный связный неориентированный граф и — длина максимального простого цикла графа , . Тогда, . |
| Доказательство: |
|
Опишем на графе следующий алгоритм раскраски:
Докажем от противного, что после выполнения описанного алгоритма граф будет правильно раскрашен. Предположим, что после выполнения алгоритма покраски в графе существует ребро, соединяющее вершины одного цвета. Пусть — цвет вершины после выполнения алгоритма раскраски.Заметим, что для произвольной вершины графа , , .Тогда, .Поскольку в дереве dfs между вершинами находящимися на одинаковом расстоянии от корня нет перекрестных ребер, то . То есть, вершины лежат на простом цикле длины по крайней мере . Получается противоречие с условием потому, что длина максимального простого цикла получается больше чем . Таким образом в графе после выполнения алгоритма раскраски нет вершин одного цвета соединенных ребром и при этом каждая вершина покрашена в один из , то есть правильно раскрашен в цвет, следовательно |
Нижняя оценка числом независимости
| Определение: |
| Подмножество вершин графа называется независимым, если любые две вершины из не смежны в |
| Определение: |
| Число независимости графа — и независимо в G |
| Лемма (нижняя оценка): |
Пусть — произвольный связный неориентированный граф с вершинами .Тогда, . |
| Доказательство: |
|
Пусть, множеств вершин окрашенных в соответствующие цвета при правильно покраски графа .Каждое из — независимое множество (поскольку вершины множества покрашены в один цвет при правильной покраски графа , следовательно, они попарно не смежны внутри множества ). Заметим, что для произвольного , (т.к независимое множество). То есть, , следовательно . |
Верхняя оценка количеством ребер
| Лемма (верхняя оценка): |
Пусть — произвольный связный неориентированный граф с ребрами.Тогда, . |
| Доказательство: |
|
Пусть, множеств вершин окрашенных в соответствующие цвета при правильно покраски графа . Заметим, что между любыми двумя различными множествами существует хотя бы одно ребро (в противном случаи эти множества можно было бы покрасить в один цвет). Тогда, . |
Нижняя оценка количеством ребер и количеством вершин
| Лемма (нижняя оценка Геллера): |
Пусть — произвольный связный неориентированный граф с вершинами и ребрами. Тогда, . |
| Доказательство: |
|
Пусть, множеств вершин окрашенных в соответствующие цвета при правильно покраски графа . . |