Проблема четырёх красок — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Общие идеи доказательства)
Строка 1: Строка 1:
== Краткая история ==
 
Раскрашивая географическую карту естественно пользоваться по возможности меньшим количеством цветов, однако так, чтобы две страны, имеющие общую часть границы (не только общую точку), были окрашены по-разному. В <tex>1852</tex> году Френсис Гутри, составляя карту графств Англии, обратил внимание, что для такой цели вполне хватает четырех красок. Его брат, Фредерик, сообщил об этом наблюдении известному математику О. Де Моргану, а тот – математической общественности. Точная формулировка гипотезы опубликована А. Кэли в <tex>1878</tex> году. Первое доказательство появилось год спустя и принадлежало В. Кемпе. Одиннадцать лет спустя П. Хивуд обнаружил в нем ошибку (Однако из доказательства Хивуд понял, что пяти красок действительно [[Хроматическое_число_планарного_графа#Раскраска_в_5_цветов|достаточно]]). За первым ошибочным доказательством последовало множество других. До середины XX века, хотя проблемой четырех красок занимались многие выдающиеся математики, положение с доказательством изменилось несущественно: идеи Дж. Д. Биркгофа позволили П. Франклину в <tex>1913</tex> году доказать гипотезу для карты с не более чем <tex>25</tex> странами. Позже это число было увеличено до <tex>38</tex>. В <tex>1977</tex> году доказательство гипотезы четырех красок было наконец получено К. Аппелем и У. Хакеном и опубликовано в двух статьях <ref>Appel K., Haken W. Every Planar Map Is Four Colorable. Contemporary Mathematics. Providence (R.I.): Amer. Math Soc., 1989. Vol. 98. 308 р.</ref>. Значительную часть рутинных проверок выполнил компьютер, и это революционное нововведение в сложившуюся практику дедуктивных рассуждений в чистой математике служит основанием для некоторого естественного скептицизма по отношению к данному доказательству и по сей день.
 
 
== Формулировка проблемы ==
 
 
{{Теорема
 
{{Теорема
 
|about=
 
|about=
Строка 9: Строка 5:
 
}}
 
}}
 
[[Файл:Map of Russia(four colour).png|230px|thumb|right|Карта России раскрашенная в <tex>4</tex> цвета]]
 
[[Файл:Map of Russia(four colour).png|230px|thumb|right|Карта России раскрашенная в <tex>4</tex> цвета]]
Проблема четырех красок кажется на первый взгляд изолированной задачей, мало связанной с другими разделами математики и практическими задачами. На самом деле это не так. Известно более <tex>20</tex> ее переформулировок, которые связывают эту проблему с задачами алгебры, статистической механики и задачами планирования.
 
  
Поэтому для доказательства начнем с того, что заменим задачу раскраски плоской карты на эквивалентную ей проблему. Выберем столицу у каждой страны (то есть выберем по одной внутренней точке в каждой из стран) и соединим дугами столицы стран, имеющих общий сегмент границы.  В результате получится [[Укладка графа на плоскости|планарный граф]]. Тогда следующая теорема эквивалентна теореме выше:
+
== Общие идеи доказательства ==
 +
Проблема четырех красок на первый взгляд выглядит мало связанной с другими разделами математики и практическими задачами.Однако известно более <tex>20</tex> ее переформулировок, которые связывают эту проблему с задачами алгебры, статистической механики и задачами планирования.
 +
 
 +
Поэтому начнем с того, что заменим задачу раскраски плоской карты на эквивалентную ей проблему. Выберем столицу у каждой страны и соединим дугами столицы стран, имеющих общий сегмент границы.  В результате получится [[Укладка графа на плоскости|планарный граф]]. Тогда следующая теорема эквивалентна теореме выше:
 
{{Теорема
 
{{Теорема
 
|about=
 
|about=
Строка 19: Строка 17:
 
[[Файл:Раскраска_планарного_графа_в_4_цвета.png|230px|thumb|right|4-раскраска планарного графа]]
 
[[Файл:Раскраска_планарного_графа_в_4_цвета.png|230px|thumb|right|4-раскраска планарного графа]]
  
Доказательство Аппеля и Хакена, в целом хотя и принято математическим сообществом, но, как было сказано выше, вызывает до сих пор определенный скептицизм. Дело в том, что даже сами авторы доказательства пишут следующее:  
+
В таком виде в <tex>1977</tex> году проблема четырех красок была доказана К. Аппелем и У. Хакеном и опубликована в двух статьях <ref>Appel K., Haken W. Every Planar Map Is Four Colorable. Contemporary Mathematics. Providence (R.I.): Amer. Math Soc., 1989. Vol. 98. 308 р.</ref>. Значительную часть проверок выполнил компьютер, из-за чего доказательство было принято не всеми математиками. Дело в том, что даже сами авторы доказательства пишут следующее:  
  
 
''"Читатель должен разобраться в <tex>50</tex> страницах текста и диаграмм, <tex>85</tex> страницах с почти <tex>2500</tex> дополнительными диаграммами, <tex>400</tex> страницами микрофишей, содержащими еще диаграммы, а также тысячи отдельных проверок утверждений, сделанных в <tex>24</tex> леммах основного текста. Вдобавок читатель узнает, что проверка некоторых фактов потребовала <tex>1200</tex> часов компьютерного времени, а при проверке вручную потребовалось бы гораздо больше. Статьи устрашающи по стилю и длине, и немногие математики прочли их сколько-нибудь подробно"''
 
''"Читатель должен разобраться в <tex>50</tex> страницах текста и диаграмм, <tex>85</tex> страницах с почти <tex>2500</tex> дополнительными диаграммами, <tex>400</tex> страницами микрофишей, содержащими еще диаграммы, а также тысячи отдельных проверок утверждений, сделанных в <tex>24</tex> леммах основного текста. Вдобавок читатель узнает, что проверка некоторых фактов потребовала <tex>1200</tex> часов компьютерного времени, а при проверке вручную потребовалось бы гораздо больше. Статьи устрашающи по стилю и длине, и немногие математики прочли их сколько-нибудь подробно"''
  
Говоря прямо, компьютерную часть доказательства почти невозможно проверить вручную, а традиционная часть доказательства длинна и сложна настолько, что ее никто целиком и не проверял. Некоторое время назад появилось новое доказательство <ref>Thomas R. An Update on the Four-Color Theorem // Not. Amer. Math. Soc. 1998. Vol. 45, № 7. Р. 848–859.</ref>, причем та часть, которая выполнена не на компьютере, уже поддается проверке. Однако компьютерная часть все еще остается скорее предметом веры.
+
Очевидно, что из-за сложности доказательства мы не сможем рассмотреть его целиком, но посмотрим на общие идеи, которые в нем используются.  
  
== Общие идеи доказательства ==
+
Во-первых, если [[Укладка графа на плоскости|грани]] образованные нашим планарным графом не триангуляция (то есть имеют не ровно три ребра у их границ), мы можем добавлять ребра без внедрения новых вершин до тех пор, пока все грани не станут триангулированными. Если полученный граф является раскрашиваемым в не более чем <tex>4</tex> цвета, то и исходный граф раскрашиваем так же (так как удаление ребер не увеличивает хроматическое число). Поэтому достаточно доказать теорему для триангулированных графов, и без потери общности мы предполагаем, что граф триангулирован.
Очевидно, что мы не сможем рассмотреть доказательство целиком, но посмотрим на общие идеи, которые в нем используются.
 
 
 
Во-первых, если [[Укладка графа на плоскости|грани]] образованные нашим планарным графом не триангуляция, то есть имеют не ровно три ребра у их границ, мы можем добавлять ребра без внедрения новых вершин до тех пор, пока все грани не станут триангулированными. Если эта триангуляция графа является раскрашиваемой в <tex>4</tex> и менее цветов, то и исходный граф раскрашиваем так же (так как удаление ребер не увеличивает хроматическое число). Поэтому достаточно доказать теорему четырех цветов для триангулированных графов, чтобы доказать ее для всех плоских графов, и без потери общности мы предполагаем, что граф триангулирован.
 
  
 
Для дальнейших рассуждений нам понадобится следующее утверждение:
 
Для дальнейших рассуждений нам понадобится следующее утверждение:
Строка 37: Строка 32:
 
}}
 
}}
  
Из данного утверждения следует, что в графе существует вершина степени <tex>\leqslant 5</tex>.
+
Из данного утверждения следует, что в графе существует вершина степени не больше <tex>5</tex>.
 +
 
 +
Попытаемся доказать теорему от противного. Пусть у нас существует граф, который требует хотя бы <tex>5</tex> цветов для раскраски. Среди всех таких графов существует минимальный, то есть такой граф <tex>G</tex>, что удаление любой вершины из него делает его <tex>4</tex>-раскрашиваемым.
 +
 
 +
{{Утверждение
 +
|statement=В <tex>G~\nexists </tex> вершины <tex>v \in V</tex> : <tex>dev(v) \leqslant 4</tex>
 +
|proof=Если в <tex>G</tex> есть вершина степени <tex>3</tex>, то мы можем просто удалить ее из графа, раскрасить полученный граф в <tex>4</tex> цвета, вернуть удаленную вершину и покрасить ее в один из цветов, не занятых соседями. Аналогично [[Хроматическое_число_планарного_графа#Раскраска_в_5_цветов|теореме Хивуда]] доказывается, что удалив вершину степени <tex>4</tex> также всегда можно раскрасить граф в <tex>4</tex> цвета.
 +
}}
  
Вернемся к доказательству нашей теоремы. Будем пытаться доказать от противного. Пусть у нас существует граф, который требует хотя бы <tex>5</tex> цветов для раскраски. Среди всех таких графов существует минимальный, то есть такой, что удаление любой вершины из него делает его <tex>4</tex>-раскрашиваемым. Тогда в таком графе не может быть вершины степени <tex> \leqslant 3</tex>, так как иначе мы может просто удалить ее из графа, раскрасить полученный граф в <tex>4</tex> цвета, вернуть удаленную вершину и покрасить ее в один из цветов, не занятых соседями. Аналогично [[Хроматическое_число_планарного_графа#Раскраска_в_5_цветов|теореме Хивуда]] доказывается, что удалив вершину степени <tex>4</tex> также всегда можно раскрасить граф в <tex>4</tex> цвета. Следовательно, и таких вершин в искомом графе нет. Для вершины степени <tex>5</tex> Кемпе попытался доказать аналогичное утверждение, но это утверждение и было опровергнуто Хивудом.
+
Для вершины степени <tex>5</tex> аналогичное утверждение неверно, хотя оно и присутствовало в одном из первых ошибочных доказательств.  
  
На этом этапе мы и натыкаемся на самую сложную часть доказательства. Имея дело со случаем вершины степени <tex>5</tex>, требуются более сложные операции, чем удаление вершины. Тогда вместо <tex>1</tex> вершины будем рассматривать связанный подграф из нескольких вершин (назовем его '''конфигурацией'''). Тогда для некоторых случаев, как и прежде, достаточно продемонстрировать, что если при удалении конфигурации граф <tex>4</tex>-раскрашиваемый, то окраска может быть изменена таким образом, что при возвращении конфигурации граф также можно раскрасить в <tex>4</tex> цвета. Конфигурации для которых это возможно назовем '''сводимыми'''. Например, конфигурация состоящая из <tex>1</tex> вершины степени <tex>\leqslant 4</tex> является сводимой (было доказано выше). '''Неизбежной''' конфигурацией назовем такое '''множество''' конфигураций, что хотя бы одна из конфигураций этого множества обязана быть в нашем графе.  
+
На этом этапе мы натыкаемся на самую сложную часть доказательства. Имея дело со случаем вершины степени <tex>5</tex>, нельзя просто удалить ее. Тогда вместо <tex>1</tex> вершины будем рассматривать связанный подграф из нескольких вершин (назовем его '''конфигурацией'''). Тогда для некоторых случаев, как и прежде, достаточно продемонстрировать, что если при удалении конфигурации граф <tex>4</tex>-раскрашиваемый, то окраска может быть изменена таким образом, что при возвращении конфигурации граф также можно раскрасить в <tex>4</tex> цвета. Конфигурации для которых это возможно назовем '''сводимыми'''. Например, конфигурация состоящая из <tex>1</tex> вершины степени <tex>\leqslant 4</tex> является сводимой (было доказано выше). '''Неизбежной''' конфигурацией назовем такое '''множество''' конфигураций, что хотя бы одна из конфигураций этого множества обязана быть в нашем графе.  
  
 
Если нам удастся найти какую-то неизбежную конфигурацию и доказать, что с ней граф все равно <tex>4</tex>-раскрашиваем, доказательство будет завершено. Основным методом, используемым, чтобы обнаружить такой набор, является [https://en.wikipedia.org/wiki/Discharging_method_(discrete_mathematics) метод разгрузки]
 
Если нам удастся найти какую-то неизбежную конфигурацию и доказать, что с ней граф все равно <tex>4</tex>-раскрашиваем, доказательство будет завершено. Основным методом, используемым, чтобы обнаружить такой набор, является [https://en.wikipedia.org/wiki/Discharging_method_(discrete_mathematics) метод разгрузки]
Строка 63: Строка 65:
 
== Источники информации ==
 
== Источники информации ==
 
* [https://www.youtube.com/watch?v=ysbqis1qofM Лекция Thomas Fernique]
 
* [https://www.youtube.com/watch?v=ysbqis1qofM Лекция Thomas Fernique]
* [http://window.edu.ru/resource/367/20367/files/0007_091.pdf Проблема 4 красок: неоконченная история доказательства]
 
 
* [https://en.wikipedia.org/wiki/Four_color_theorem Four color theorem]
 
* [https://en.wikipedia.org/wiki/Four_color_theorem Four color theorem]
 
* [https://en.wikipedia.org/wiki/Discharging_method_(discrete_mathematics) Discharging method]
 
* [https://en.wikipedia.org/wiki/Discharging_method_(discrete_mathematics) Discharging method]

Версия 18:40, 12 ноября 2018

Теорема (Проблема четырех красок):
Теорема о четырёх красках — утверждение о том, что всякую карту можно раскрасить четырьмя красками так, чтобы любые две области, имеющие общий участок границы, были раскрашены в разные цвета. Под общим участком границы понимается часть линии, то есть стыки нескольких областей в одной точке общей границей для них не считаются.
Карта России раскрашенная в [math]4[/math] цвета

Общие идеи доказательства

Проблема четырех красок на первый взгляд выглядит мало связанной с другими разделами математики и практическими задачами.Однако известно более [math]20[/math] ее переформулировок, которые связывают эту проблему с задачами алгебры, статистической механики и задачами планирования.

Поэтому начнем с того, что заменим задачу раскраски плоской карты на эквивалентную ей проблему. Выберем столицу у каждой страны и соединим дугами столицы стран, имеющих общий сегмент границы. В результате получится планарный граф. Тогда следующая теорема эквивалентна теореме выше:

Теорема (Хроматическое число планарного графа):
Хроматическое число планарного графа не превосходит [math]4[/math].
4-раскраска планарного графа

В таком виде в [math]1977[/math] году проблема четырех красок была доказана К. Аппелем и У. Хакеном и опубликована в двух статьях [1]. Значительную часть проверок выполнил компьютер, из-за чего доказательство было принято не всеми математиками. Дело в том, что даже сами авторы доказательства пишут следующее:

"Читатель должен разобраться в [math]50[/math] страницах текста и диаграмм, [math]85[/math] страницах с почти [math]2500[/math] дополнительными диаграммами, [math]400[/math] страницами микрофишей, содержащими еще диаграммы, а также тысячи отдельных проверок утверждений, сделанных в [math]24[/math] леммах основного текста. Вдобавок читатель узнает, что проверка некоторых фактов потребовала [math]1200[/math] часов компьютерного времени, а при проверке вручную потребовалось бы гораздо больше. Статьи устрашающи по стилю и длине, и немногие математики прочли их сколько-нибудь подробно"

Очевидно, что из-за сложности доказательства мы не сможем рассмотреть его целиком, но посмотрим на общие идеи, которые в нем используются.

Во-первых, если грани образованные нашим планарным графом не триангуляция (то есть имеют не ровно три ребра у их границ), мы можем добавлять ребра без внедрения новых вершин до тех пор, пока все грани не станут триангулированными. Если полученный граф является раскрашиваемым в не более чем [math]4[/math] цвета, то и исходный граф раскрашиваем так же (так как удаление ребер не увеличивает хроматическое число). Поэтому достаточно доказать теорему для триангулированных графов, и без потери общности мы предполагаем, что граф триангулирован.

Для дальнейших рассуждений нам понадобится следующее утверждение:

Утверждение:
Для триангулированного графа [math]\sum\limits^{D}_{i=1}(6-i)v_{i} = 12[/math], где [math]v_{i}[/math] — количество вершин степени [math]i[/math], а [math]D[/math] — максимальная степень вершины в графе.
[math]\triangleright[/math]
Так как граф триангулирован, то [math]2E=3F[/math], где [math]E[/math] — количество ребер, а [math]F[/math] — количество граней. Из формулы Эйлера [math]V - E + \dfrac{2}{3}E = 2 ~\rightarrow~ 6V - 2E = 6\sum\limits_{i=1}^{D}v_{i} - \sum\limits_{i=1}^{D}iv_{i} = \sum\limits_{i=1}^{D}(6 - i)v_{i} = 12[/math]
[math]\triangleleft[/math]

Из данного утверждения следует, что в графе существует вершина степени не больше [math]5[/math].

Попытаемся доказать теорему от противного. Пусть у нас существует граф, который требует хотя бы [math]5[/math] цветов для раскраски. Среди всех таких графов существует минимальный, то есть такой граф [math]G[/math], что удаление любой вершины из него делает его [math]4[/math]-раскрашиваемым.

Утверждение:
В [math]G~\nexists [/math] вершины [math]v \in V[/math] : [math]dev(v) \leqslant 4[/math]
[math]\triangleright[/math]
Если в [math]G[/math] есть вершина степени [math]3[/math], то мы можем просто удалить ее из графа, раскрасить полученный граф в [math]4[/math] цвета, вернуть удаленную вершину и покрасить ее в один из цветов, не занятых соседями. Аналогично теореме Хивуда доказывается, что удалив вершину степени [math]4[/math] также всегда можно раскрасить граф в [math]4[/math] цвета.
[math]\triangleleft[/math]

Для вершины степени [math]5[/math] аналогичное утверждение неверно, хотя оно и присутствовало в одном из первых ошибочных доказательств.

На этом этапе мы натыкаемся на самую сложную часть доказательства. Имея дело со случаем вершины степени [math]5[/math], нельзя просто удалить ее. Тогда вместо [math]1[/math] вершины будем рассматривать связанный подграф из нескольких вершин (назовем его конфигурацией). Тогда для некоторых случаев, как и прежде, достаточно продемонстрировать, что если при удалении конфигурации граф [math]4[/math]-раскрашиваемый, то окраска может быть изменена таким образом, что при возвращении конфигурации граф также можно раскрасить в [math]4[/math] цвета. Конфигурации для которых это возможно назовем сводимыми. Например, конфигурация состоящая из [math]1[/math] вершины степени [math]\leqslant 4[/math] является сводимой (было доказано выше). Неизбежной конфигурацией назовем такое множество конфигураций, что хотя бы одна из конфигураций этого множества обязана быть в нашем графе.

Если нам удастся найти какую-то неизбежную конфигурацию и доказать, что с ней граф все равно [math]4[/math]-раскрашиваем, доказательство будет завершено. Основным методом, используемым, чтобы обнаружить такой набор, является метод разгрузки

Приведем пример нахождения неизбежной конфигурации:

Утверждение:
В планарном графе есть вершина степени [math]\leqslant 4[/math] или конфигурация состоящая из [math]2[/math] вершин степени [math]5[/math] или из вершины степени [math]5[/math] и степени [math]6[/math]
[math]\triangleright[/math]
Присвоим каждой вершине [math]v[/math] некую величину — груз [math]=6-deg(v)[/math]. Предположим что наше утверждение неверно. Следовательно, в графе нет вершин степени [math]\leqslant 4[/math]. Тогда положительный груз есть только у вершин степени [math]5[/math] (и он равен единице), у вершин степени [math]6[/math] груз [math]=0[/math], а у всех остальных он отрицательный. По доказанному выше утверждению, мы знаем что сумма грузов по всем вершинам [math]=12 \gt 0[/math]. Значит вершины степени [math]5[/math] должны компенсировать все отрицательные грузы других вершин. Пусть каждая такая вершина отдает по [math]\dfrac{1}{5}[/math] своего груза соседям. Тогда у всех вершин степени [math]5[/math] и [math]6[/math] груз останется равен [math]0[/math] (помним что вершины степени [math]6[/math] не смежны с вершинами степени [math]5[/math] по предположению). Рассмотрим все остальные вершины. Так как мы проводим доказательство для триангулированных графов, то у вершины степени [math]i[/math] не может быть больше чем [math]\bigg\lfloor\dfrac{i}{2}\bigg\rfloor[/math] соседей степени [math]5[/math]. Однако [math](6 - i) + \dfrac{1}{5}\bigg\lfloor\dfrac{i}{2}\bigg\rfloor \lt 0[/math] для [math]i \geqslant 7[/math], следовательно, сумма грузов отрицательна. Получено противоречие.
[math]\triangleleft[/math]

Выше мы получили неизбежную конфигурацию, состоящую из небольшого количество элементов. Подобными действиями Аппель и Хакен провели [math]487[/math] операций разгрузки и получили неизбежную конфигурацию из [math]1482[/math] конфигураций. Некоторые из них являются сводимыми, доказательством раскрашиваемости графов с остальными и занимался компьютер.

См. также

Примeчания

  1. Appel K., Haken W. Every Planar Map Is Four Colorable. Contemporary Mathematics. Providence (R.I.): Amer. Math Soc., 1989. Vol. 98. 308 р.

Источники информации