Методы получения случайных комбинаторных объектов — различия между версиями
Cczy (обсуждение | вклад) (→Битовые вектора) |
Cczy (обсуждение | вклад) (→Описание алгоритма) |
||
Строка 5: | Строка 5: | ||
Пусть <tex> B = \{b_1, b_2 ..., b_k\} </tex> - множество различных элементов, которые могут находиться в данном комбинаторном объекте. | Пусть <tex> B = \{b_1, b_2 ..., b_k\} </tex> - множество различных элементов, которые могут находиться в данном комбинаторном объекте. | ||
− | Будем получать элементы по порядку: сначала определим, какой элемент будет стоять на первом месте, потом на втором и так далее. Считаем, что мы построили префикс длинны <tex> i </tex> : <tex> P = \{a_1, a_2, \ldots, a_i\} </tex>. Будем выбирать элемент <tex> a_{i+1} </tex> из множества всех возможных так, чтобы вероятность выбора элемнта <tex> b \in B </tex>, была пропорциональна числу комбинторных обьектов размера <tex> n </tex> с префиксом <tex> P + b </tex>. Для этого разобъем отрезок натуральных чисел <tex> [1, s] </tex>. где <tex> s </tex> - число различных комбинаторных объектов с текущим префиксом, на <tex> k </tex> диапазонов так, чтобы размер диапазаоны <tex> d_j </tex> был равен числу объектов с префиксом <tex> P + b_j </tex>. С помощью функция для генерации случайного числа получим число <tex> r </tex> в интервале <tex> [1, s] </tex> и добавим к префиксу <tex> | + | Будем получать элементы по порядку: сначала определим, какой элемент будет стоять на первом месте, потом на втором и так далее. Считаем, что мы построили префикс длинны <tex> i </tex> : <tex> P = \{a_1, a_2, \ldots, a_i\} </tex>. Будем выбирать элемент <tex> a_{i+1} </tex> из множества всех возможных так, чтобы вероятность выбора элемнта <tex> b \in B </tex>, была пропорциональна числу комбинторных обьектов размера <tex> n </tex> с префиксом <tex> P + b </tex>. Для этого разобъем отрезок натуральных чисел <tex> [1, s] </tex>. где <tex> s </tex> - число различных комбинаторных объектов с текущим префиксом, на <tex> k </tex> диапазонов так, чтобы размер диапазаоны <tex> d_j </tex> был равен числу объектов с префиксом <tex> P + b_j </tex>. С помощью функция для генерации случайного числа получим число <tex> r </tex> в интервале <tex> [1, s] </tex> и добавим к префиксу <tex> P </tex> элемент <tex> b_j </tex> соответствующий диапазону отрезка в которм находится полученное число. |
'''object''' randomObject(n: '''int''', k: '''int'''): <font color = green> // <tex> n </tex> {{---}} размер комбинторного объекта, <tex> k </tex> {{---}} число различных элемнтов.</font> | '''object''' randomObject(n: '''int''', k: '''int'''): <font color = green> // <tex> n </tex> {{---}} размер комбинторного объекта, <tex> k </tex> {{---}} число различных элемнтов.</font> | ||
Строка 19: | Строка 19: | ||
'''return''' prefix | '''return''' prefix | ||
− | Сложность алгоритма {{---}} <tex>O(nk) </tex>. Количества комбинаторных объектов с заданными префиксами считаются известными, и их подсчет в сложности не учитывается. Стоит отметить, что подсчет количества комбинаторных объектов с заданным префиксом зачастую является задачей с достаточно большой вычислительной сложностью. | + | Сложность алгоритма {{---}} <tex>O(nk) </tex>. Количества комбинаторных объектов с заданными префиксами считаются известными, и их подсчет в сложности не учитывается. Стоит отметить, что подсчет количества комбинаторных объектов с заданным префиксом зачастую является задачей с достаточно большой вычислительной сложностью. |
== Битовые вектора == | == Битовые вектора == |
Версия 23:49, 7 декабря 2018
Описание алгоритма
Задача: |
Необходимо сгенерировать случайный комбинаторный объект размера | с равномерным распределением вероятности, если в наличии есть функция для генерации случайного числа в заданном интервале.
Пусть
- множество различных элементов, которые могут находиться в данном комбинаторном объекте.Будем получать элементы по порядку: сначала определим, какой элемент будет стоять на первом месте, потом на втором и так далее. Считаем, что мы построили префикс длинны
: . Будем выбирать элемент из множества всех возможных так, чтобы вероятность выбора элемнта , была пропорциональна числу комбинторных обьектов размера с префиксом . Для этого разобъем отрезок натуральных чисел . где - число различных комбинаторных объектов с текущим префиксом, на диапазонов так, чтобы размер диапазаоны был равен числу объектов с префиксом . С помощью функция для генерации случайного числа получим число в интервале и добавим к префиксу элемент соответствующий диапазону отрезка в которм находится полученное число.object randomObject(n: int, k: int): //— размер комбинторного объекта, — число различных элемнтов. for i = 1 to n s = number(prefix) // число комбинаторных объектов с текущим префиксом. r = random(1, s) for j = 1 to k if number(prefix + B[j]) < r // — множество всех возможных элементов. r = r - number(prefix + B[j]) // если не попало в текщий диапазон — перейдем к следующему. else prefix[i] = b[j] break return prefix
Сложность алгоритма —
. Количества комбинаторных объектов с заданными префиксами считаются известными, и их подсчет в сложности не учитывается. Стоит отметить, что подсчет количества комбинаторных объектов с заданным префиксом зачастую является задачей с достаточно большой вычислительной сложностью.Битовые вектора
Рассмотрим алгоритм получения случайного битового вектора. В битовом векторе может находиться только два типа элементов:
и , следовательно . Заметим что для любого префикса длины число возможных комбинаторных объектов одинаково и равно, следовательно на каждм шаге алгоритма небходмо выбирать с равной вероятностью илиvector<int> randomBitVector(n: int): //
— размер битового вектора.
for i = 1 to n
r = random(0, 1)
v[i] = r
return prefix
Сложность алгоритма —
, так как в случае двоичных векторов постоянно и равно .