Методы получения случайных комбинаторных объектов — различия между версиями
Cczy (обсуждение | вклад) |
Cczy (обсуждение | вклад) (→Правильные скобочные последовательности) |
||
Строка 43: | Строка 43: | ||
Рассмотрим "полуправильные" скобочные последовательности т.е. такие что всякой закрывающей скобке соответствует парная открывающая, но не все открытые скобки закрыты. Такую последовтеьность можно охарактеризовать двумя числами: <tex> l </tex> — длина скобочной последовательности и <tex> b </tex> — баланс (т.е. разность между количеством открывающих и закрывающих скобок). Заметим что любой префикс правильной скобочной последовательности является "полупраильной" скобочной последовательностью, и что для любого префикса <tex> P </tex> длины <tex> l </tex> число различных ПСП длины <tex> n </tex> равно числу "полуправильных" скобочных последовательностей длины <tex> n-l </tex> с таким же балансом как у <tex> P </tex>. | Рассмотрим "полуправильные" скобочные последовательности т.е. такие что всякой закрывающей скобке соответствует парная открывающая, но не все открытые скобки закрыты. Такую последовтеьность можно охарактеризовать двумя числами: <tex> l </tex> — длина скобочной последовательности и <tex> b </tex> — баланс (т.е. разность между количеством открывающих и закрывающих скобок). Заметим что любой префикс правильной скобочной последовательности является "полупраильной" скобочной последовательностью, и что для любого префикса <tex> P </tex> длины <tex> l </tex> число различных ПСП длины <tex> n </tex> равно числу "полуправильных" скобочных последовательностей длины <tex> n-l </tex> с таким же балансом как у <tex> P </tex>. | ||
− | Научимся считать <tex> number(l, b) </tex> {{---}} число последовательностей длины <tex> l </tex> и баланса <tex> b </tex>). | + | Научимся считать <tex> number(l, b) </tex> {{---}} число последовательностей длины <tex> l </tex> и баланса <tex> b </tex>). Если <tex> l = 0 </tex>, то ответ понятен сразу: <tex> number[0][0] = 1 </tex>, все остальные <tex> number[0][b] = 0 </tex>. Пусть теперь <tex> i > 0 </tex>, тогда переберём, чему мог быть равен последний символ этой последовательности. Если он был равен <tex> '(' </tex>, то до этого символа мы находились в состоянии <tex> (l-1,b-1) </tex>. Если он был равен <tex>')'</tex>, то предыдущим было состояние <tex>(l-1,b+1)</tex>. Таким образом, получаем формулу: |
+ | |||
+ | <tex>number[i][j] = number[i-1][j-1] + number[i-1][j+1]</tex> | ||
+ | |||
+ | (считается, что все значения <tex>d[i][j]</tex> при отрицательном <tex>j</tex> равны нулю). Этот преподсчет можно выполнить за <tex>O(n^2)</tex>. |
Версия 01:19, 8 декабря 2018
Содержание
Описание алгоритма
Задача: |
Необходимо сгенерировать случайный комбинаторный объект размера | с равномерным распределением вероятности, если в наличии есть функция для генерации случайного числа в заданном интервале.
Пусть
- множество различных элементов, которые могут находиться в данном комбинаторном объекте.Будем получать элементы по порядку: сначала определим, какой элемент будет стоять на первом месте, потом на втором и так далее. Считаем, что мы построили префикс длинны
: . Будем выбирать элемент из множества всех возможных так, чтобы вероятность выбора элемнта , была пропорциональна числу комбинторных обьектов размера с префиксом . Для этого разобъем отрезок натуральных чисел . где - число различных комбинаторных объектов с текущим префиксом, на диапазонов так, чтобы размер диапазаоны был равен числу объектов с префиксом . С помощью функция для генерации случайного числа получим число в интервале и добавим к префиксу элемент соответствующий диапазону отрезка в которм находится полученное число.object randomObject(n: int, k: int): //— размер комбинторного объекта, — число различных элемнтов. for i = 1 to n s = number(prefix) // число комбинаторных объектов с текущим префиксом. r = random(1, s) for j = 1 to k if number(prefix + B[j]) < r // — множество всех возможных элементов. r = r - number(prefix + B[j]) // если не попало в текщий диапазон — перейдем к следующему. else prefix[i] = b[j] break return prefix
Сложность алгоритма —
. Количества комбинаторных объектов с заданными префиксами считаются известными, и их подсчет в сложности не учитывается. Стоит отметить, что подсчет количества комбинаторных объектов с заданным префиксом зачастую является задачей с достаточно большой вычислительной сложностью.Доказательство корректности
Докажем по индукции, что вероятность получить любой перфикс
равна , где - число различных комбинаторных данного типа длины , а - число различных комбинаторных обьектов с таким префиксом.- Любой комбинаторный объеут имеет пустой перфикс, следовательно . Вероятность получить любой префикс длины равна , что равно .
- Пусть вероятность получить префикс длины равна
- Тогда вероятность получить из любой префикс длины равна , что равно
Битовые вектора
Рассмотрим алгоритм получения случайного битового вектора. В битовом векторе может находиться только два типа элементов:
и , следовательно . Заметим что для любого префикса длины число возможных комбинаторных объектов одинаково и равно, следовательно на каждом шаге алгоритма небходмо выбирать с равной вероятностью илиvector<int> randomBitVector(n: int): //
— размер битового вектора.
for i = 1 to n
r = random(0, 1)
v[i] = r
return prefix
Сложность алгоритма —
, так как в случае двоичных векторов постоянно и равно .Правильные скобочные последовательности
Рассмотрим алгоритм получения случайной правильной скобочной последовательности. Правильная скобочная пследовательность состоит из двух типов элементов: открывающей и закрывающей скобок, следовательно
.Рассмотрим "полуправильные" скобочные последовательности т.е. такие что всякой закрывающей скобке соответствует парная открывающая, но не все открытые скобки закрыты. Такую последовтеьность можно охарактеризовать двумя числами:
— длина скобочной последовательности и — баланс (т.е. разность между количеством открывающих и закрывающих скобок). Заметим что любой префикс правильной скобочной последовательности является "полупраильной" скобочной последовательностью, и что для любого префикса длины число различных ПСП длины равно числу "полуправильных" скобочных последовательностей длины с таким же балансом как у .Научимся считать
— число последовательностей длины и баланса ). Если , то ответ понятен сразу: , все остальные . Пусть теперь , тогда переберём, чему мог быть равен последний символ этой последовательности. Если он был равен , то до этого символа мы находились в состоянии . Если он был равен , то предыдущим было состояние . Таким образом, получаем формулу:
(считается, что все значения
при отрицательном равны нулю). Этот преподсчет можно выполнить за .