Шифратор и дешифратор — различия между версиями
Gaporf (обсуждение | вклад) (→Логическая схема шифратора) |
Gaporf (обсуждение | вклад) (→Логическая схема шифратора) |
||
Строка 63: | Строка 63: | ||
|[[Файл:LogicSircuit2to1encoder.png|thumb|360px|Логическая схема шифратора <tex>2</tex>-to-<tex>1</tex>]] | |[[Файл:LogicSircuit2to1encoder.png|thumb|360px|Логическая схема шифратора <tex>2</tex>-to-<tex>1</tex>]] | ||
|[[Файл:LogicSircuit4to2encoder.png|thumb|360px|Логическая схема шифратора <tex>4</tex>-to-<tex>2</tex>]] | |[[Файл:LogicSircuit4to2encoder.png|thumb|360px|Логическая схема шифратора <tex>4</tex>-to-<tex>2</tex>]] | ||
+ | |} | ||
==Использование в реальной жизни== | ==Использование в реальной жизни== |
Версия 01:06, 11 декабря 2018
Определение: |
Дешифратор (англ. decoder) — логическая схема, имеющая входов , , , и выходов , , , . На все выходы подаётся , кроме выхода , на который подаётся , где — число, которое закодировано входами , , , |
Определение: |
Шифратор (англ. encoder) — логическая схема, имеющая | входов , , , и выходов , , , . Если на -ый вход подать , а на остальные входы — , то выходы , , , будут кодировать число .
Содержание
Принцип работы дешифратора
Суть дешифратора заключается в том, что с помощью
входов , , , можно задавать выход, на который будет подаваться . Для того, чтобы лучше понять, как работает дешифратор, рассмотрим в качестве примера дешифратор -to- (это значит, что у этого дешифратора есть два входа и и четыре выхода , , и ). Если , то на выходе будет значение , на остальных выходах будет . Если же , , то на выходе будет , на остальных выходах будут . Если , , то на выходе будет , а на остальных входах будет . Если же , то на выходе будет , а на других — . Для более ясной картины обратимся к таблице истинности.Логическая схема дешифратора
Давайте построим логическую схему дешифратора рекурсивным способом: допустим, что мы построили схему для
входа, теперь попробуем слить -ый выход с предыдущими . Для схема выглядит тривиальным образом: от входа отходят два провода, один напрямую соединён с выходом , другой соединён с гейтом , а гейт соединён с выходом . Теперь допустим, что мы можем построить схему для входов. Тогда -ый вход соединим с дешифратором -to- , а первые входы соединим с дешифратором -to- и потом соединим каждый выход дешифратора -to- с каждым выходом дешифратора -to- с помощью гейтов , потом соединим соответствующие гейты с выходами таким образом, чтобы значение на входе было равно только в том случае, если число кодируется входами , , , . Очевидно, что мы таким образом перебрали всевозможные комбинации значений на входах , , , , поэтому наша схема будет работать верно.Принцип работы шифратора
Принцип работы шифратора заключается в том, что выходы
, , , кодируют один из входов , , , в двоичной системе счисления. Очевидно, что если подать на несколько входов значение , то такая схема будет работать некорректно. В качестве примера рассмотрим шифратор -to- . Если , то , если же , то и . Остальные случаи аналогичные, но для более лучшего понимания можно обратиться к таблице истинности.Логическая схема шифратора
Построить логическую схему шифратора в общем случае довольна нетривиальная задача, поэтому ограничимся лишь двумя частными случаями шифраторов
-to- и -to- .Использование в реальной жизни
Принцип работы дешифратора используется при построении мультиплексора и демультиплексора. Также шифраторы и дешифраторы используются в том случае, когда надо передавать большое количество данных, при этом использовать много проводов почти невозможно (к примеру телеграф). В этом случае шифраторы и дешифраторы позволяют использовать малое количество проводов, обеспечивая при этом наибольшее возможное количество состояний, которое может быть передано.
См. также
- Реализация булевой функции схемой из функциональных элементов
- Метод Лупанова синтеза схем
- Мультиплексор