Batch-normalization — различия между версиями
Строка 8: | Строка 8: | ||
где математическое ожидание и дисперсия считаются по всей обучающей выборке. Такая нормализация входа слоя нейронной сети может изменить представление данных в слое. Чтобы избежать данной проблемы, вводятся два параметра сжатия и сдвига нормализованной величины для каждого <tex>x_{k}</tex>: <tex>\gamma_{k}</tex>, <tex>\beta_{k}</tex> {{---}} которые действуют следующим образом: | где математическое ожидание и дисперсия считаются по всей обучающей выборке. Такая нормализация входа слоя нейронной сети может изменить представление данных в слое. Чтобы избежать данной проблемы, вводятся два параметра сжатия и сдвига нормализованной величины для каждого <tex>x_{k}</tex>: <tex>\gamma_{k}</tex>, <tex>\beta_{k}</tex> {{---}} которые действуют следующим образом: | ||
− | <tex>y^{( | + | <tex>y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}</tex>. |
Данные параметры настраиваются в процессе обучения вместе с остальными гиперпараметрами модели. | Данные параметры настраиваются в процессе обучения вместе с остальными гиперпараметрами модели. |
Версия 20:44, 7 января 2019
Нормализация батчей (англ. batch-normalization) — это метод, который позволяет повысить производительность и стабилизировать работу искусственных нейронных сетей. Суть данного метода заключается в том, что некоторым слоям нейронной сети на вход подаются данные, предварительно обработанные и имеющие нулевое среднее значение и единичную дисперсию. Впервые данный метод был представлен в [1].
Описание метода
Опишем устройство метода нормализации батчей. Пусть, на вход некоторому слою нейронной сети поступает вектор размерности
: . Нормализуем данный вектор по каждой размерности :,
где математическое ожидание и дисперсия считаются по всей обучающей выборке. Такая нормализация входа слоя нейронной сети может изменить представление данных в слое. Чтобы избежать данной проблемы, вводятся два параметра сжатия и сдвига нормализованной величины для каждого
: , — которые действуют следующим образом:.
Данные параметры настраиваются в процессе обучения вместе с остальными гиперпараметрами модели.
Пусть, обучение модели производится с помощью батчей
размера : . Здесь нормализация применяется к каждой компоненте входа с номером отдельно, поэтому в индекс опускается для ясности.