Примеры кода на Scala — различия между версиями
(→Обработка естественного языка) |
(→Обработка естественного языка) |
||
| Строка 176: | Строка 176: | ||
[https://github.com/IlyaHalsky/neerc-wiki-ml-scala/blob/master/lstm/GravesLSTMCharModellingExample.scala Пример реализации LSTM] на основе DeepLearning4j<ref>[https://deeplearning4j.org/ DeepLearning4j]</ref> и ND4J<ref>[https://deeplearning4j.org/docs/latest/nd4j-overview ND4J]</ref> | [https://github.com/IlyaHalsky/neerc-wiki-ml-scala/blob/master/lstm/GravesLSTMCharModellingExample.scala Пример реализации LSTM] на основе DeepLearning4j<ref>[https://deeplearning4j.org/ DeepLearning4j]</ref> и ND4J<ref>[https://deeplearning4j.org/docs/latest/nd4j-overview ND4J]</ref> | ||
===Обработка естественного языка=== | ===Обработка естественного языка=== | ||
| − | Основная статья: [[Обработка естественного языка#Пример кода на языке Scala | Обработка естественного языка | + | Основная статья: [[Обработка естественного языка#Пример кода на языке Scala | Обработка естественного языка: Пример кода на языке Scala]]. |
===Метрический классификатор и метод ближайших соседей=== | ===Метрический классификатор и метод ближайших соседей=== | ||
Версия 13:01, 21 января 2019
Содержание
- 1 Популярные библиотеки
- 2 Примеры кода
- 2.1 Линейная регрессия
- 2.2 Вариации регрессии
- 2.3 Логистическая регрессия
- 2.4 Классификация при помощи MLP
- 2.5 Рекуррентные нейронные сети
- 2.6 Долгая краткосрочная память
- 2.7 Обработка естественного языка
- 2.8 Метрический классификатор и метод ближайших соседей
- 2.9 Метод опорных векторов
- 2.10 Дерево решений и случайный лес
- 2.11 Байесовская классификация
- 2.12 EM-алгоритм
- 2.13 Бустинг, AdaBoost
- 2.14 Уменьшение размерности
- 3 Примечания
Популярные библиотеки
- Breeze[1] — библиотека, которая копирует реализует идеи строения структур данных из MATLAB[2] и NumPy[3]. Breeze позволяет быстро манипулировть данными и позволяет реализовавать матричные и веторные операции, решать задачи оптимизации, обрабатывать сигналы устройств.
- Epic[4] — часть ScalaNLP, позволяющая парсить и обрабатывать текст, поддерживающая использование GPU. Так же имеет фрэймворк для предсказаний текста.
- Smpile[5] — развивающийся проект, похожий на scikit-learn[6], разработанный на Java и имеющий API для Scala. Имеет большой набор алгоритмов для решения задач классификации, регрессии, выбора фичей и другого.
- Apache Spark MLlib[7] — построенная на Spark[8] имеет большой набор алгоритмов, написанный на Scala.
- DeepLearning.scala [9] — набор инструментов для глубокого обучения[10]. Позволяет создавать динамические нейронные сети, давая возможность параллельных вычеслений.
Примеры кода
Линейная регрессия
Основная статья: Линейная регрессия[на 5.01.19 не создан]
Sbt зависимость:
libraryDependencies += "org.apache.spark" %% "spark-core" % "2.4.0" libraryDependencies += "org.apache.spark" %% "spark-mllib" % "2.4.0" % "runtime"
Пример линейной регрессии c применением org.apache.spark.ml.regression.LinearRegression[11]:
val training = spark.read.format("libsvm")
.load("linear_regression.txt")
val lr = new LinearRegression()
.setMaxIter(10)
.setRegParam(0.3)
.setElasticNetParam(0.8)
val lrModel = lr.fit(training)
Вывод итоговых параметров модели:
println(lrModel.coefficients)
println(lrModel.intercept)
val trainingSummary = lrModel.summary
println(trainingSummary.totalIterations)
println(trainingSummary.objectiveHistory.mkString(","))
trainingSummary.residuals.show()
println(trainingSummary.rootMeanSquaredError)
println(trainingSummary.r2)
Вариации регрессии
Основная статья: Вариации регрессии[на 5.01.19 не создан]
Sbt зависимость:
libraryDependencies += "com.github.haifengl" %% "smile-scala" % "1.5.2"
Пример ридж и лассо регрессии c применением smile.regression[12]:
import smile.data.{AttributeDataset, NumericAttribute}
import smile.read
import smile.regression.{LASSO, RidgeRegression, lasso, ridge}
val data: AttributeDataset = read.table("regression.txt", delimiter = " ", response = Some((new NumericAttribute("class"), 0)))
val x: Array[Array[Double]] = data.x()
val y: Array[Double] = data.y()
val ridgeRegression: RidgeRegression = ridge(x, y, 0.0057)
val lassoRegression: LASSO = lasso(x, y, 10)
println(ridgeRegression)
println(lassoRegression)
Логистическая регрессия
Основная статья: Логистическая регрессия[на 5.01.19 не создан]
Sbt зависимость:
libraryDependencies += "org.apache.spark" %% "spark-core" % "2.4.0" libraryDependencies += "org.apache.spark" %% "spark-mllib" % "2.4.0" % "runtime"
Пример логистической регрессии c применением spark.mllib.classification[13]:
import org.apache.spark.mllib.classification.{LogisticRegressionModel, LogisticRegressionWithLBFGS}
import org.apache.spark.mllib.evaluation.MulticlassMetrics
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
val data = MLUtils.loadLibSVMFile(sc, "logisticRegresion.txt") val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L) val training = splits(0).cache() val test = splits(1) val model = new LogisticRegressionWithLBFGS() .setNumClasses(10) .run(training)
val predictionAndLabels = test.map { case LabeledPoint(label, features) =>
val prediction = model.predict(features)
(prediction, label)
}
val metrics = new MulticlassMetrics(predictionAndLabels)
val accuracy = metrics.accuracy
println(accuracy)
Классификация при помощи MLP
Основная статья: Нейронные сети, перцептрон.
Sbt зависимость:
libraryDependencies += "com.github.haifengl" %% "smile-scala" % "1.5.2"
Пример классификации c применением smile.classification.mlp[14]:
import smile.classification.NeuralNetwork.{ActivationFunction, ErrorFunction}
import smile.data.{AttributeDataset, NumericAttribute}
import smile.read
import smile.classification.mlp
import smile.plot.plot
val data: AttributeDataset = read.table("iris.csv", delimiter = ",", response = Some((new NumericAttribute("class"), 2)))
val x: Array[Array[Double]] = data.x()
val y: Array[Int] = data.y().map(_.toInt)
val mlpModel = mlp(x, y, Array(2, 10, 2), ErrorFunction.LEAST_MEAN_SQUARES, ActivationFunction.LOGISTIC_SIGMOID)
plot(x, y, mlpModel)
Рекуррентные нейронные сети
Основная статья: Рекуррентные нейронные сети[на 5.01.19 не создан]
Пример кода, с использованием билиотеки DeepLearning.scala
// Задание слоёв
def tanh(x: INDArrayLayer): INDArrayLayer = {
val exp_x = hyperparameters.exp(x)
val exp_nx = hyperparameters.exp(-x)
(exp_x - exp_nx) / (exp_x + exp_nx)
}
def charRNN(x: INDArray, y: INDArray, hprev: INDArrayLayer): (DoubleLayer, INDArrayLayer, INDArrayLayer) = {
val hnext = tanh(wxh.dot(x) + whh.dot(hprev) + bh)
val yraw = why.dot(hnext) + by
val yraw_exp = hyperparameters.exp(yraw)
val prob = yraw_exp / yraw_exp.sum
val loss = -hyperparameters.log((prob * y).sum)
(loss, prob, hnext)
}
// Определение структуры
val batches = data.zip(data.tail).grouped(seqLength).toVector
type WithHiddenLayer[A] = (A, INDArrayLayer)
type Batch = IndexedSeq[(Char, Char)]
type Losses = Vector[Double]
def singleBatch(batch: WithHiddenLayer[Batch]): WithHiddenLayer[DoubleLayer] = {
batch match {
case (batchseq, hprev) => batchseq.foldLeft((DoubleLayer(0.0.forward), hprev)) {
(bstate: WithHiddenLayer[DoubleLayer], xy: (Char, Char)) =>
(bstate, xy) match {
case ((tot, localhprev), (x, y)) => {
charRNN(oneOfK(x), oneOfK(y), localhprev) match {
case (localloss, _, localhnext) => {
(tot + localloss, localhnext)
}
}
}
}
}
}
}
// Определение одного шага обучения
def initH = INDArrayLayer(Nd4j.zeros(hiddenSize, 1).forward)
def singleRound(initprevloss: Losses): Future[Losses] =
(batches.foldLeftM((initprevloss, initH)) {
(bstate: WithHiddenLayer[Losses], batch: Batch) =>
bstate match {
case (prevloss, hprev) => singleBatch(batch, hprev) match {
case (bloss, hnext) => bloss.train.map {
(blossval: Double) => {
val nloss = prevloss.last * 0.999 + blossval * 0.001
val loss_seq = prevloss :+ prevloss.last * 0.999 + blossval * 0.001
(loss_seq, hnext)
}
}
}
}
}).map {
(fstate: WithHiddenLayer[Losses]) =>
fstate match {
case (floss, _) => floss
}
}
def allRounds: Future[Losses] = (0 until 2048).foldLeftM(Vector(-math.log(1.0 / vocabSize) * seqLength)) {
(ploss: Losses, round: Int) => {
singleRound(ploss)
}
}
// Обучение сети def unsafePerformFuture[A](f: Future[A]): A = Await.result(f.toScalaFuture, Duration.Inf) val losses = unsafePerformFuture(allRounds)
Долгая краткосрочная память
Освновная статья: Долгая краткосрочная память[на 15.01.19 не создан].
Пример реализации LSTM на основе DeepLearning4j[15] и ND4J[16]
Обработка естественного языка
Основная статья: Обработка естественного языка: Пример кода на языке Scala.
Метрический классификатор и метод ближайших соседей
Освновная статья: Метрический классификатор и метод ближайших соседей: Пример реализации на языке Scala.
Метод опорных векторов
Освновная статья: Метод опорных векторов[на 15.01.19 не создан].
SBT зависимость:
libraryDependencies += "com.github.haifengl" %% "smile-scala" % "1.5.2"
Пример классификации датасета и вычисления F1 меры[17] используя smile.classification.svm[18]:
import smile.classification._ import smile.data._ import smile.plot._ import smile.read import smile.validation.FMeasure
val iris: AttributeDataset = read.table("iris.csv", delimiter = ",", response = Some((new NumericAttribute("class"), 2)))
val x: Array[Array[Double]] = iris.x()
val y: Array[Int] = iris.y().map(_.toInt)
val SVM = svm(x, y, new GaussianKernel(8.0), 100)
val predictions: Array[Int] = x.map(SVM.predict)
val f1Score = new FMeasure().measure(predictions, y)
plot(x, y, SVM)
Дерево решений и случайный лес
Освновная статья: Дерево решений и случайный лес: Пример использования на языке Scala.
Байесовская классификация
Освновная статья: Байесовская классификация[на 7.01.19 не создан].
SBT зависимость:
libraryDependencies += "com.tsukaby" %% "naive-bayes-classifier-scala" % "0.2.0"
Пример классификации используя smile.classification.cart[19]:
// Создание модели
val bayes = new BayesClassifier[String, String]()
// Задание соотвествия категория - слово
bayes.learn("technology", "github" :: "git" :: "tech" :: "technology" :: Nil)
bayes.learn("weather", "sun" :: "rain" :: "cloud" :: "weather" :: "snow" :: Nil)
bayes.learn("government", "ballot" :: "winner" :: "party" :: "money" :: "candidate" :: Nil)
// Тестовые примеры
val unknownText1 = "I use git".split(" ")
val unknownText2 = "Today's weather is snow".split(" ")
val unknownText3 = "I will vote for that party".split(" ")
// Классификация
println(bayes.classify(unknownText1).map(_.category).getOrElse("")) // technology
println(bayes.classify(unknownText2).map(_.category).getOrElse("")) // weather
println(bayes.classify(unknownText3).map(_.category).getOrElse("")) // government
EM-алгоритм
Освновная статья: EM-алгоритм[на 7.01.19 не создан].
SBT зависимость:
libraryDependencies += "com.tsukaby" %% "naive-bayes-classifier-scala" % "0.2.0"
Пример классификации используя smile.clustering.kmeans[20]:
import smile.clustering._ import smile.data._ import smile.plot._ import smile.read
val iris: AttributeDataset = read.table("iris.csv", delimiter = ",", response = Some((new NumericAttribute("class"), 2)))
val x: Array[Array[Double]] = iris.x()
val kMeans: KMeans = kmeans(x, k = 6, maxIter = 1000)
val y = kMeans.getClusterLabel
plot(x, y, '.', Palette.COLORS)
Бустинг, AdaBoost
Освновная статья: Бустинг, AdaBoost: Пример на языке Scala.
Уменьшение размерности
Освновная статья: Уменьшение размерности: Примеры кода на языке Scala.
Примечания
- ↑ Breeze
- ↑ MATLAB, structures
- ↑ NumPy wiki
- ↑ ScalaNLP, Epic
- ↑ Smile, Statistical Machine Intelligence and Learning Engine
- ↑ scikit-learn
- ↑ Apache Spark MLlib
- ↑ Apache Spark
- ↑ DeppLearning.scala
- ↑ Глубокое обучение
- ↑ Spark, LinearRegression
- ↑ Smile, Regression
- ↑ Spark, Logistic Regression
- ↑ Smile, MLP
- ↑ DeepLearning4j
- ↑ ND4J
- ↑ F1 мера
- ↑ Smile, SVM
- ↑ Naive bayes classifier, Scala
- ↑ Smile, K-Means