Виды ансамблей — различия между версиями
(→Ансамбль: Определение) |
(→Бутстрэп: Удалено) |
||
| Строка 26: | Строка 26: | ||
[[Файл:Виды_Ансамблей_1.png]][[Файл:Виды_Ансамблей_2.png]] | [[Файл:Виды_Ансамблей_1.png]][[Файл:Виды_Ансамблей_2.png]] | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
== Бэггинг == | == Бэггинг == | ||
Версия 11:39, 19 февраля 2019
Содержание
Ансамбль
Ансамбль алгоритмов (методов) - метод, который использует несколько обучающих алгоритмов с целью получения лучшей эффективности прогнозирования, чем можно было бы получить от каждого обучающего алгоритма по отдельности.
Рассмотрим задачу классификации на K классов:
Пусть имеется M классификатор ("экспертов"):
Тогда давайте посмотрим новый классификатор на основе данных:
Простое голосование:
Взвешенное голосование:
Теорема Кондорсе о присяжных
| Теорема: |
Если каждый член жюри присяжных имеет независимое мнение, и если вероятность правильного решения члена жюри больше 0.5, то тогда вероятность правильного решения присяжных в целом возрастает с увеличением количества членов жюри, и стремиться к единице. Если же вероятность быть правым у каждого из членов жюри меньше 0.5, то вероятность принятия правильного решения присяжными в целом монотонно уменьшается и стремится к нулю с увеличением количества присяжных. |
Пусть - количество присяжный, - вероятность правильного решения одного эксперта, - вероятность правильного решения всего жюри, - минимальное большинство членов жюри
Тогда
Бэггинг
Пусть имеется выборка размера . Количество классификаторов
Алгоритм классификации в технологии бэггинг на подпространствах:
- Генерируется с помощью бутстрэпа M выборок размера N для каждого классификатора
- Производится независимое обучения каждого элементарного классификатора (каждого алгоритма, определенного на своем подпространстве).
- Производится классификация основной выборки на каждом из подпространств (также независимо).
- Принимается окончательное решение о принадлежности объекта одному из классов. Это можно сделать несколькими разными способами, подробнее описано ниже.
Окончательное решение о принадлежности объекта классу может приниматься, например, одним из следующих методов:
- Консенсус: если все элементарные классификаторы присвоили объекту одну и ту же метку, то относим объект к выбранному классу.
- Простое большинство: консенсус достижим очень редко, поэтому чаще всего используют метод простого большинства. Здесь объекту присваивается метка того класса, который определило для него большинство элементарных классификаторов.
- Взвешивание классификаторов: если классификаторов четное количество, то голосов может получиться поровну, еще возможно, что для эксперты одна из групп параметров важна в большей степени, тогда прибегают к взвешиванию классификаторов. То есть при голосовании голос классификатора умножается на его вес.
Примеры кода
Инициализация
from pydataset import data
#Считаем данные The Boston Housing Dataset
df = data('Housing')
#Проверим данные
df.head().values
array([[42000.0, 5850, 3, 1, 2, 'yes', 'no', 'yes', 'no', 'no', 1, 'no'],
[38500.0, 4000, 2, 1, 1, 'yes', 'no', 'no', 'no', 'no', 0, 'no'],
[49500.0, 3060, 3, 1, 1, 'yes', 'no', 'no', 'no', 'no', 0, 'no'], ...
# Создадим словарь для слов 'no', 'yes'
d = dict(zip(['no', 'yes'], range(0,2)))
for i in zip(df.dtypes.index, df.dtypes):
if str(i[1]) == 'object':
df[i[0]] = df[i[0]].map(d)
df[‘price’] = pd.qcut(df[‘price’], 3, labels=[‘0’, ‘1’, ‘2’]).cat.codes
# Разделим множество на два
y = df['price']
X = df.drop('price', 1)
Бэггинг
# Импорты классификаторов
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import BaggingClassifier, ExtraTreesClassifier, RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import RidgeClassifier
from sklearn.svm import SVC
seed = 1075
np.random.seed(seed)
# Инициализуруем классификаторы
rf = RandomForestClassifier()
et = ExtraTreesClassifier()
knn = KNeighborsClassifier()
svc = SVC()
rg = RidgeClassifier()
clf_array = [rf, et, knn, svc, rg]
for clf in clf_array:
vanilla_scores = cross_val_score(clf, X, y, cv=10, n_jobs=-1)
bagging_clf = BaggingClassifier(clf, max_samples=0.4, max_features=10, random_state=seed)
bagging_scores = cross_val_score(bagging_clf, X, y, cv=10, n_jobs=-1)
print "Mean of: {1:.3f}, std: (+/-) {2:.3f [{0}]"
.format(clf.__class__.__name__,
vanilla_scores.mean(), vanilla_scores.std())
print "Mean of: {1:.3f}, std: (+/-) {2:.3f} [Bagging {0}]\n"
.format(clf.__class__.__name__,
bagging_scores.mean(), bagging_scores.std())
#Результат Mean of: 0.632, std: (+/-) 0.081 [RandomForestClassifier] Mean of: 0.639, std: (+/-) 0.069 [Bagging RandomForestClassifier] Mean of: 0.636, std: (+/-) 0.080 [ExtraTreesClassifier] Mean of: 0.654, std: (+/-) 0.073 [Bagging ExtraTreesClassifier] Mean of: 0.500, std: (+/-) 0.086 [KNeighborsClassifier] Mean of: 0.535, std: (+/-) 0.111 [Bagging KNeighborsClassifier] Mean of: 0.465, std: (+/-) 0.085 [SVC] Mean of: 0.535, std: (+/-) 0.083 [Bagging SVC] Mean of: 0.639, std: (+/-) 0.050 [RidgeClassifier] Mean of: 0.597, std: (+/-) 0.045 [Bagging RidgeClassifier]
Бустинг
ada_boost = AdaBoostClassifier()
grad_boost = GradientBoostingClassifier()
xgb_boost = XGBClassifier()
boost_array = [ada_boost, grad_boost, xgb_boost]
eclf = EnsembleVoteClassifier(clfs=[ada_boost, grad_boost, xgb_boost], voting='hard')
labels = ['Ada Boost', 'Grad Boost', 'XG Boost', 'Ensemble']
for clf, label in zip([ada_boost, grad_boost, xgb_boost, eclf], labels):
scores = cross_val_score(clf, X, y, cv=10, scoring='accuracy')
print("Mean: {0:.3f}, std: (+/-) {1:.3f} [{2}]".format(scores.mean(), scores.std(), label))
# Результат Mean: 0.641, std: (+/-) 0.082 [Ada Boost] Mean: 0.654, std: (+/-) 0.113 [Grad Boost] Mean: 0.663, std: (+/-) 0.101 [XG Boost] Mean: 0.667, std: (+/-) 0.105 [Ensemble]

