Эволюционные алгоритмы кластеризации — различия между версиями
Dimatomp (обсуждение | вклад) |
Dimatomp (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
[[Кластеризация#Постановка задачи кластеризации|Формулировка задачи кластеризации]] в общем случае не задаёт условие близости относительно метрики (см. [[Кластеризация#Теорема невозможности Клейнберга|теорему Клейнберга]]); в связи с этим, многие разработанные [[Кластеризация#Методы кластеризации|методы и алгоритмы]] решения задачи кластеризации предполагают применимость конкретной меры близости объектов для анализа рассматриваемой выборки. | [[Кластеризация#Постановка задачи кластеризации|Формулировка задачи кластеризации]] в общем случае не задаёт условие близости относительно метрики (см. [[Кластеризация#Теорема невозможности Клейнберга|теорему Клейнберга]]); в связи с этим, многие разработанные [[Кластеризация#Методы кластеризации|методы и алгоритмы]] решения задачи кластеризации предполагают применимость конкретной меры близости объектов для анализа рассматриваемой выборки. | ||
− | Альтернативный подход заключается в задании [[Оценка качества в задаче кластеризации|индекса кластеризации]] как меры близости объектов внутри кластеров и использовании универсального метода для оптимизации этого индекса; '''эволюционные алгоритмы''' являются одним из семейств таких универсальных методов. | + | Альтернативный подход заключается в задании [[Оценка качества в задаче кластеризации|индекса кластеризации]] как меры близости объектов внутри кластеров и использовании универсального метода для оптимизации этого индекса; '''[[эволюционные алгоритмы]]''' являются одним из семейств таких универсальных методов. |
− | == | + | = Описание метода = |
+ | Для решения задачи кластеризации (hard clustering) эволюционный алгоритм использует: | ||
+ | * разбиения выборки в качестве '''особей'''; | ||
+ | * индекс кластеризации в качестве '''целевой функции'''; | ||
+ | * операции видоизменения разбиений в качестве '''мутаций'''; | ||
+ | * операции комбинирования ("скрещивания") разбиений в качестве '''кроссовера'''. | ||
+ | = Параметры эволюционного алгоритма = | ||
+ | Из описания выше следует, что эволюционный алгоритм кластеризации задаётся рядом гиперпараметров - таких как инициализация, применяемые мутации, схема самого алгоритма и т.п. Некоторые исследованные элементы конфигурации эволюционного алгоритма кластеризации приведены ниже. |
Версия 01:20, 8 апреля 2019
Формулировка задачи кластеризации в общем случае не задаёт условие близости относительно метрики (см. теорему Клейнберга); в связи с этим, многие разработанные методы и алгоритмы решения задачи кластеризации предполагают применимость конкретной меры близости объектов для анализа рассматриваемой выборки. Альтернативный подход заключается в задании индекса кластеризации как меры близости объектов внутри кластеров и использовании универсального метода для оптимизации этого индекса; эволюционные алгоритмы являются одним из семейств таких универсальных методов.
Описание метода
Для решения задачи кластеризации (hard clustering) эволюционный алгоритм использует:
- разбиения выборки в качестве особей;
- индекс кластеризации в качестве целевой функции;
- операции видоизменения разбиений в качестве мутаций;
- операции комбинирования ("скрещивания") разбиений в качестве кроссовера.
Параметры эволюционного алгоритма
Из описания выше следует, что эволюционный алгоритм кластеризации задаётся рядом гиперпараметров - таких как инициализация, применяемые мутации, схема самого алгоритма и т.п. Некоторые исследованные элементы конфигурации эволюционного алгоритма кластеризации приведены ниже.