Мост, эквивалентные определения — различия между версиями
(→Эквивалентные определения) |
(→Эквивалентные определения) |
||
Строка 34: | Строка 34: | ||
<tex>(1) \Rightarrow (2)</tex> Пусть ребро <tex>x</tex> соединяет вершины <tex>a</tex> и <tex>b</tex>. Пусть граф <tex> G - {x} </tex> {{---}} связный. Тогда между вершинами <tex>a</tex> и <tex>b</tex> существует еще один путь, т.е. между вершинами <tex>a</tex> и <tex>b</tex> существуют два реберно-непересекающихся пути. Но тогда ребро <tex>x</tex> не является мостом графа <tex>G</tex>. Противоречие. | <tex>(1) \Rightarrow (2)</tex> Пусть ребро <tex>x</tex> соединяет вершины <tex>a</tex> и <tex>b</tex>. Пусть граф <tex> G - {x} </tex> {{---}} связный. Тогда между вершинами <tex>a</tex> и <tex>b</tex> существует еще один путь, т.е. между вершинами <tex>a</tex> и <tex>b</tex> существуют два реберно-непересекающихся пути. Но тогда ребро <tex>x</tex> не является мостом графа <tex>G</tex>. Противоречие. | ||
− | <tex>(2) \Rightarrow (4)</tex> В условиях определения (4) пусть | + | <tex>(2) \Rightarrow (4)</tex> В условиях определения (4) пусть существуют такие вершины <tex>u</tex> и <tex>w</tex>, что между ними существует простой путь <tex>P: x \notin P</tex>. Но тогда граф <tex>G - {x}</tex> {{---}} связный. Противоречие. |
<tex>(4) \Rightarrow (3)</tex> Возьмем <tex>\forall u \in U</tex> и <tex>\forall w \in W </tex>. Тогда <tex>\forall</tex> простой путь <tex>u \rightsquigarrow w</tex> содержит ребро <tex>x</tex>. Утверждение доказано | <tex>(4) \Rightarrow (3)</tex> Возьмем <tex>\forall u \in U</tex> и <tex>\forall w \in W </tex>. Тогда <tex>\forall</tex> простой путь <tex>u \rightsquigarrow w</tex> содержит ребро <tex>x</tex>. Утверждение доказано |
Версия 23:16, 11 июня 2019
Пусть
— связный граф.Определение: |
Мост (англ. bridge) графа | — ребро, соединяющее две компоненты реберной двусвязности .
Пример графа с тремя мостами
Эквивалентные определения
Определение: |
Мост графа | — ребро, при удалении которого граф становится несвязным.
Определение: |
Ребро | является мостом графа , если в существуют такие вершины и , что любой простой путь между этими вершинами проходит через ребро
Определение: |
Ребро | является мостом графа , если существует разбиение множества вершин на такие множества и , что и ребро принадлежит любому простому пути .
Теорема: |
Определения (1), (2), (3) и (4) эквивалентны. |
Доказательство: |
Пусть ребро соединяет вершины и . Пусть граф — связный. Тогда между вершинами и существует еще один путь, т.е. между вершинами и существуют два реберно-непересекающихся пути. Но тогда ребро не является мостом графа . Противоречие. В условиях определения (4) пусть существуют такие вершины и , что между ними существует простой путь . Но тогда граф — связный. Противоречие. Возьмем и . Тогда простой путь содержит ребро . Утверждение доказано Тогда между вершинами Пусть . Пусть ребро не является мостом по определению (1). и есть простой путь . Составим такой путь , что . Сделаем путь простым. Получим простой путь , не проходящий по ребру . Противоречие. |
См.также
Источники информации
- Харари Ф. Теория графов. М.: Мир, 1973. (Изд. 3, М.: КомКнига, 2006. — 296 с.)