Список заданий по ДМ 2к 2020 весна — различия между версиями
(Метки: правка с мобильного устройства, правка из мобильной версии) |
|||
Строка 30: | Строка 30: | ||
# Несложно заметить, что производящая функция последовательности $a_n = n^m$ будет иметь вид $\frac {P_m(s)}{(1-s)^{m+1}}$. Выведите рекуррентное соотношение для коэффициентов многочленов $P_{m, k}$. | # Несложно заметить, что производящая функция последовательности $a_n = n^m$ будет иметь вид $\frac {P_m(s)}{(1-s)^{m+1}}$. Выведите рекуррентное соотношение для коэффициентов многочленов $P_{m, k}$. | ||
# Оказывается, что коэффициенты $P_{m,k}$ также являются количеством некоторых комбинаторных объектов. Каких? | # Оказывается, что коэффициенты $P_{m,k}$ также являются количеством некоторых комбинаторных объектов. Каких? | ||
+ | # Найдите производящую функцию для замощений прямоугольника $2\times n$ доминошками и единичными клетками. | ||
+ | # Найдите производящую функцию для замощений прямоугольника $2\times n$ уголками (квадратами $2\times 2$ с вырезанной одной клеткой) и единичными клетками. | ||
+ | # Путь Моцкина - путь, начинающийся в точке $(0, 0)$, составленный из векторов $(1, 1)$, $(1, 0)$, $(1, -1)$, не опускающийся ниже оси $OX$ и заканчивающийся в точке $(n, 0)$. Напишите рекуррентное соотношение для числа путей Моцкина, найдите производящую функцию для числа таких путей. | ||
+ | # Рассмотрим множество путей на прямой, начинающихся в 0, состоящих из шагов длины 1 вправо или влево. Будем называть такой путь блужданием. Найдите рекуррентную формулу и производящую функцию для числа блужданий из $n$ шагов, оканчивающихся в 0. | ||
+ | # Найдите рекуррентную формулу и производящую функцию для числа блужданий из $n$ шагов, оканчивающихся в 0 и не заходящих в отрицательную полупрямую. | ||
+ | # Найдите рекуррентную формулу и производящую функцию для числа блужданий из $n$ шагов, оканчивающихся в фиксированной точке $N > 0$. | ||
+ | # Найдите рекуррентную формулу и производящую функцию для числа блужданий из $n$ шагов, оканчивающихся в фиксированной точке $N > 0$ и не заходящих в отрицательную полупрямую. | ||
+ | # Последовательность задана рекуррентным соотношением $a_0=a_1=1$, $a_n = 5a_{n-1}-6a_{n-2}$. Оцените асимптотическое поведение $a_n$ при $n\to+\infty$. | ||
+ | # Последовательность задана рекуррентным соотношением $a_0=a_1=1$, $a_n = 6a_{n-2}-a_{n-1}$. Оцените асимптотическое поведение $a_n$ при $n\to+\infty$. | ||
+ | # Последовательность задана рекуррентным соотношением $a_0=a_1=1$, $a_n = 6a_{n-1}-9a_{n-2}$. Оцените асимптотическое поведение $a_n$ при $n\to+\infty$. | ||
+ | # Петя заинтересовался, что будет, если последовательность, заданная линейным рекуррентным соотношением, имеет производящую фукнцию, в знаменателе которой стоит $Q(t)=(1-ct)(1+ct)$, ведь тогда асимптотическое поведение членов на четных и нечетных позициях разное. Разберитесь. | ||
+ | # Последовательность задана рекуррентным соотношением $a_0=a_1=1$, $a_n = 2a_{n-1}-2a_{n-2}$. Оцените асимптотическое поведение $a_n$ при $n\to+\infty$. | ||
+ | # Пусть рациональная производящая функция имеет вид $A(s) = \frac {P(s)}{Q(s)}$, где единственный минимальный по модулю корень $Q(s)$ равен $1 / \beta$ и имеет кратность $k$. Тогда $a_n \approx C \beta^n n^{k-1}$. Покажите, что $C = k \frac {(-\beta)^n P(1 / \beta)} {Q^{(k)}(1 / \beta)}$ | ||
+ | # Докажите, что если последовательность $a_n$ допускает представление в виде $a_n = \sum_i p_i(n)q_i^n$, где $p_i(n)$ - полиномы, и все $q_i$ различны, то такое представление единственно с точностью до порядка слагаемых. | ||
+ | # Произведением Адамара двух производящих функций $A(t)$ и $B(t)$ называется призводящая функция для ряда $C(t) = a_0b_0+a_1b_1t+a_2b_2t^2+\ldots+a_nb_nt^n+\ldots$. Докажите, что если $A(t)$ и $B(t)$ являются отношениями двух полиномов, то таким же свойством обладает и $C(t)$. | ||
+ | # Найдите произведение Адамара $\frac{1}{1-x}$ и $\frac{1}{1-2x}$. | ||
+ | # Найдите произведение Адамара $\frac{1}{1-2x}$ и $\frac{1}{1-3x}$. | ||
+ | # Найдите произведение Адамара $\frac{1}{1+3x-x^2}$ и $\frac{1}{1-2x}$. | ||
+ | # Найдите произведение Адамара $\frac{1}{(1-3x)^2}$ и $\frac{1}{(1-2x)^2}$. |
Версия 21:35, 29 февраля 2020
- Формальный степенной ряд $\exp(s) = e^s$ определен как $e^s=1+\frac{1}{1!}s+\frac{1}{2!}s^2+\frac{1}{3!}s^3+\ldots+\frac{1}{n!}s^n+\ldots$. Логично, что $e^{-s}=1-\frac{1}{1!}s+\frac{1}{2!}s^2-\frac{1}{3!}s^3+\ldots+(-1)^n\frac{1}{n!}s^n+\ldots$. Докажите, используя определение умножения для степенных рядов, что $e^se^{-s}=1$.
- Формальный степенной ряд $(1+s)^\alpha$ определен как $(1+s)^\alpha=1+\frac{\alpha}{1}s+\frac{\alpha(\alpha-1)}{1 \cdot 2}s^2+\ldots+\frac{\alpha(\alpha-1)\ldots(\alpha-n+1)}{1 \cdot 2 \cdot\ldots\cdot n}s^n+\ldots$. Докажите, что $(1+s)^\alpha(1+s)^\beta=(1+s)^{\alpha+\beta}$.
- Формальный степенной ряд $\cos(s)$ определен как $\sum_{n=0}^{\infty} (-1)^n \frac {s^{2n}}{(2n)!}$, а $\sin(s)$ определен как $\sum_{n=0}^{\infty} (-1)^n \frac {s^{2n+1}}{(2n+1)!}$. Докажите, что $\sin^2(s) + \cos^2(s) = 1$.
- Докажите, что $\sin(2s) = 2 \sin(s) \cos(s)$.
- Пусть $B(s) = b_1s+b_2s^2+b_3s^3+\ldots+b_ns^n+\ldots$, причем $b_1\ne 0$. Пусть формальные степенные ряды $A(s)$ и $C(s)$ таковы, что $A(B(s)) = s$, $B(C(s))=s$. Докажите, что $A(s)=C(s)$ Этот ряд называется обратным к $B(s)$, обозначается как $B^{-1}(s)$.
- Будем называть нулем степенной ряд $0(s) = 0 + 0s + 0s^2 + \ldots$. Докажите, что $A(s) \ne 0(s)$, $B(s) \ne 0(s)$, то $A(s)B(s) \ne 0(s)$.
- Докажите, что $(A(s)B(s))' = A'(s)B(s) + A(s)B'(s)$.
- Докажите, что $\int(A'(s)B(s) + A(s)B'(s)) = A(s)B(s) - A(0)B(0)$.
- Найдите производящую функцию для последовательности $0 \cdot 1, 1 \cdot 2, 2 \cdot 3, 3 \cdot 4, \ldots, (n - 1) \cdot n, \ldots$.
- Найдите производящую функцию для последовательности $1^2, 2^2, 3^2, \ldots, n^2, \ldots$.
- Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(s)=a_0+a_1s+a_2s^2+\ldots$. Найдите производящую функцию последовательности $a_0 + a_1, a_1 + a_2, \ldots, a_k+a_{k+1}$
- Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(s)=a_0+a_1s+a_2s^2+\ldots$. Найдите производящую функцию последовательности $a_0, a_0 + a_1, a_0 + a_1 + a_2, \ldots, \sum\limits_{i=0}^ka_i,\ldots$
- Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(s)=a_0+a_1s+a_2s^2+\ldots$. Найдите производящую функцию последовательности $a_0, a_1b, a_2b^2, \ldots, a_kb^k, \ldots$
- Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(s)=a_0+a_1s+a_2s^2+\ldots$. Найдите производящую функцию последовательности $a_0, 0, a_1, 0, a_2, 0, a_3 \ldots$
- Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(s)=a_0+a_1s+a_2s^2+\ldots$. Найдите производящую функцию последовательности $a_0, a_2, a_4, a_6 \ldots$
- Пользуясь производящей функцией для чисел Фибоначчи, докажите утверждение, что $f_0+f_1+\ldots+f_n=f_{n+2}-1$.
- Пользуясь производящей функцией для чисел Фибоначчи, докажите утверждение, что $f_0+f_2+\ldots+f_{2n}=f_{2n+1}$.
- Пользуясь производящей функцией для чисел Фибоначчи, докажите утверждение, что $f_1+f_3+\ldots+f_{2n-1}=f_{2n}-1$.
- Пользуясь производящей функцией для чисел Фибоначчи, докажите утверждение, что $f_0^2+f_1^2+f_2^2+\ldots+f_n^2=f_nf_{n+1}$.
- Найдите производящую функцию для чисел "трибоначчи" $f_0=f_1=f_2=1$, $f_n = f_{n-1}+f_{n-2}+f_{n-3}$.
- Найдите производящую функцию для последовательности, заданной рекуррентностью $f_0=f_1=f_2=1$, $f_n = f_{n-1}-2f_{n-3}$.
- Производящая функция называется рациональной, если она представима в виде отношения двух многочленов. Для производящих функций каждой из следующих последовательностей выясните, является ли она рациональной, если да, приведите ее представление в таком виде. Последовательность # Последовательность $1, -2, 3, -4, 5, \ldots$.
- Последовательность $0, 1, 8, 27, 64, 125, \ldots, k^3,\ldots$
- Последовательность $1, 1, 4, 9, 25, \ldots, F_k^2,\ldots$
- Найдите производящую функцию для строк над алфавитом $\{0, 1\}$, не содержащих три нуля подряд.
- Найдите производящую функцию для строк над алфавитом $\{0, 1\}$, не содержащих подстроки 010.
- Найдите производящую функцию для строк над алфавитом $\{0, 1\}$, не содержащих подстроки 011.
- Обозначим за $a_n$ количество способов разменять $n$ рублей монетами по $1$, $2$ и $5$ рублей (порядок монет важен). Постройте производящую функцию для $a_n$.
- То же самое, что в предыдущем задании, но порядок монет не важен.
- Несложно заметить, что производящая функция последовательности $a_n = n^m$ будет иметь вид $\frac {P_m(s)}{(1-s)^{m+1}}$. Выведите рекуррентное соотношение для коэффициентов многочленов $P_{m, k}$.
- Оказывается, что коэффициенты $P_{m,k}$ также являются количеством некоторых комбинаторных объектов. Каких?
- Найдите производящую функцию для замощений прямоугольника $2\times n$ доминошками и единичными клетками.
- Найдите производящую функцию для замощений прямоугольника $2\times n$ уголками (квадратами $2\times 2$ с вырезанной одной клеткой) и единичными клетками.
- Путь Моцкина - путь, начинающийся в точке $(0, 0)$, составленный из векторов $(1, 1)$, $(1, 0)$, $(1, -1)$, не опускающийся ниже оси $OX$ и заканчивающийся в точке $(n, 0)$. Напишите рекуррентное соотношение для числа путей Моцкина, найдите производящую функцию для числа таких путей.
- Рассмотрим множество путей на прямой, начинающихся в 0, состоящих из шагов длины 1 вправо или влево. Будем называть такой путь блужданием. Найдите рекуррентную формулу и производящую функцию для числа блужданий из $n$ шагов, оканчивающихся в 0.
- Найдите рекуррентную формулу и производящую функцию для числа блужданий из $n$ шагов, оканчивающихся в 0 и не заходящих в отрицательную полупрямую.
- Найдите рекуррентную формулу и производящую функцию для числа блужданий из $n$ шагов, оканчивающихся в фиксированной точке $N > 0$.
- Найдите рекуррентную формулу и производящую функцию для числа блужданий из $n$ шагов, оканчивающихся в фиксированной точке $N > 0$ и не заходящих в отрицательную полупрямую.
- Последовательность задана рекуррентным соотношением $a_0=a_1=1$, $a_n = 5a_{n-1}-6a_{n-2}$. Оцените асимптотическое поведение $a_n$ при $n\to+\infty$.
- Последовательность задана рекуррентным соотношением $a_0=a_1=1$, $a_n = 6a_{n-2}-a_{n-1}$. Оцените асимптотическое поведение $a_n$ при $n\to+\infty$.
- Последовательность задана рекуррентным соотношением $a_0=a_1=1$, $a_n = 6a_{n-1}-9a_{n-2}$. Оцените асимптотическое поведение $a_n$ при $n\to+\infty$.
- Петя заинтересовался, что будет, если последовательность, заданная линейным рекуррентным соотношением, имеет производящую фукнцию, в знаменателе которой стоит $Q(t)=(1-ct)(1+ct)$, ведь тогда асимптотическое поведение членов на четных и нечетных позициях разное. Разберитесь.
- Последовательность задана рекуррентным соотношением $a_0=a_1=1$, $a_n = 2a_{n-1}-2a_{n-2}$. Оцените асимптотическое поведение $a_n$ при $n\to+\infty$.
- Пусть рациональная производящая функция имеет вид $A(s) = \frac {P(s)}{Q(s)}$, где единственный минимальный по модулю корень $Q(s)$ равен $1 / \beta$ и имеет кратность $k$. Тогда $a_n \approx C \beta^n n^{k-1}$. Покажите, что $C = k \frac {(-\beta)^n P(1 / \beta)} {Q^{(k)}(1 / \beta)}$
- Докажите, что если последовательность $a_n$ допускает представление в виде $a_n = \sum_i p_i(n)q_i^n$, где $p_i(n)$ - полиномы, и все $q_i$ различны, то такое представление единственно с точностью до порядка слагаемых.
- Произведением Адамара двух производящих функций $A(t)$ и $B(t)$ называется призводящая функция для ряда $C(t) = a_0b_0+a_1b_1t+a_2b_2t^2+\ldots+a_nb_nt^n+\ldots$. Докажите, что если $A(t)$ и $B(t)$ являются отношениями двух полиномов, то таким же свойством обладает и $C(t)$.
- Найдите произведение Адамара $\frac{1}{1-x}$ и $\frac{1}{1-2x}$.
- Найдите произведение Адамара $\frac{1}{1-2x}$ и $\frac{1}{1-3x}$.
- Найдите произведение Адамара $\frac{1}{1+3x-x^2}$ и $\frac{1}{1-2x}$.
- Найдите произведение Адамара $\frac{1}{(1-3x)^2}$ и $\frac{1}{(1-2x)^2}$.