Симуляция одним распределением другого — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Симуляция распределений)
Строка 9: Строка 9:
  
 
==Симуляция распределений==
 
==Симуляция распределений==
Рассмотрим следующий случай. Допустим, у нас есть честная монета. А нам надо получить распределения с вероятностями <tex>1/3</tex>. Проведем селдующий эксперимент. Подкинем монету дважды. И если выпадет два раза орел - эксперимент не удался, повторим его.
+
Рассмотрим следующий случай. Допустим, у нас есть честная монета. А нам надо получить распределения с вероятностями <tex>1/3</tex>. Проведем следующий эксперимент. Подкинем монету дважды. И если выпадет два раза орел - эксперимент не удался, повторим его.
 
Предположим, что у нас есть последовательность экспериментов. Вероятность успеха  <tex dpi = "140">p = \frac{3}{4}</tex>. Вероятность неудачи <tex dpi = "140">q = 1 - p = \frac{1}{4}</tex> Сколько экспериментов будет проведено до того, как будет достигнут успех? Пусть случайная величина <tex>X</tex> равна количествуэкспериментов, необходимых для достижения успеха. Тогда <tex>X</tex> принимает значения <tex>\{1,2,...\}</tex> и для <tex> k \ge 1 </tex>
 
Предположим, что у нас есть последовательность экспериментов. Вероятность успеха  <tex dpi = "140">p = \frac{3}{4}</tex>. Вероятность неудачи <tex dpi = "140">q = 1 - p = \frac{1}{4}</tex> Сколько экспериментов будет проведено до того, как будет достигнут успех? Пусть случайная величина <tex>X</tex> равна количествуэкспериментов, необходимых для достижения успеха. Тогда <tex>X</tex> принимает значения <tex>\{1,2,...\}</tex> и для <tex> k \ge 1 </tex>
 
: <tex dpi = "140">{p}(X = k) = q^{k-1}p,</tex>
 
: <tex dpi = "140">{p}(X = k) = q^{k-1}p,</tex>
Строка 26: Строка 26:
 
[[Файл:Sim pic3.JPG‎|400px]]
 
[[Файл:Sim pic3.JPG‎|400px]]
 
Вывод: из любого исходного распределения можно получить любое нужное нам распределение.
 
Вывод: из любого исходного распределения можно получить любое нужное нам распределение.
 +
 
==См. также==  
 
==См. также==  
 
*[[Условная вероятность]]
 
*[[Условная вероятность]]

Версия 19:25, 18 января 2011

Распределение

Геометрическое распределение с p = 3/4

Распределение — одно из основных понятий теории вероятностей и математической статистики. Распределение вероятностей какой-либо случайной величины задается в простейшем случае указанием возможных значений этой величины и соответствующих им вероятностей, в более сложных — т. н. функцией распределения или плотностью вероятности.

Примеры распределений

  • Биномиальное распределение
  • Нормальное распределение
  • Равномерное распределение

Симуляция распределений

Рассмотрим следующий случай. Допустим, у нас есть честная монета. А нам надо получить распределения с вероятностями [math]1/3[/math]. Проведем следующий эксперимент. Подкинем монету дважды. И если выпадет два раза орел - эксперимент не удался, повторим его. Предположим, что у нас есть последовательность экспериментов. Вероятность успеха [math]p = \frac{3}{4}[/math]. Вероятность неудачи [math]q = 1 - p = \frac{1}{4}[/math] Сколько экспериментов будет проведено до того, как будет достигнут успех? Пусть случайная величина [math]X[/math] равна количествуэкспериментов, необходимых для достижения успеха. Тогда [math]X[/math] принимает значения [math]\{1,2,...\}[/math] и для [math] k \ge 1 [/math]

[math]{p}(X = k) = q^{k-1}p,[/math]

поскольку перед наступлением успешного эксперимента было проведено [math] k - 1 [/math] неуспешных. Распределение вероятности, удовлетворяющее этому уравнению называется геометрическим распределением. Так как [math] q \lt 1 [/math] можно посчитать математическое ожидание геометрического распределения.

[math]E(X) = \sum\limits_{k = 0}^{\infty}kq^{k-1}p = \frac{p}{q}\sum\limits_{k = 0}^{\infty}kq^{k} = \frac{p}{q} \frac{q}{(1 - q)^{2}} = \frac{1}{p} =\frac{1}{\frac{3}{4}} = \frac{4}{3}. [/math]

Дисперсия вычисляется аналогично.

[math]D(X) = \frac{q}{p^{2}} = \frac{4}{9} [/math]

Обобщим. Допустим у нас есть распределение [math]p.[/math] Нам нужно получить распределение [math]q.[/math]:

  • Для начала рассмотрим случай, когда все [math]p_i = \frac{1}{k},[/math] а в распределениии [math]q [/math] количество элементарных исходов равно [math]2.[/math] Проводим эксперимент, если попадаем в область пересекающуюся с [math] q_1 [/math] и [math] q_2,[/math] то увеличиваем ее и повторяем эксперимент. На рисунке ниже красным обозначенно распределение [math] q. [/math] Вероятность того, что на этом шаге эксперимент не закончится — [math]\frac{1}{k}[/math] Математическое ожидание количества экспериментов — [math] \frac{k}{k-1}, max(\frac{k}{k-1}) = 2 ([/math]при [math]k = 2) [/math]

Sim pic1.JPG

  • Теперь рассмотри случай, когда все элементарные исходы [math]p_i[/math] по прежнему равновероятны [math](p_i = \frac{1}{k}),[/math]а количество элементарных исходов распределения [math]q[/math] равно [math]n (\sum\limits_{j=1}^{n}q_j = 1). [/math] Повторим эксперимент [math] t [/math] раз. [math] k^t \ge 2n, t \ge \log\limits_{k}2n [/math] Отрезок разбился на [math] k^t [/math] отрезков. Стык будет не более, чем в половине отрезков. Математическое ожидание количества экспериментов [math] \approx 2t [/math]

Sim pic2.JPG

  • [math]p_i, \sum\limits_{i}p_i = 1, q_j, \sum\limits_{j}q_j = 1. [/math] Берем [math] p_i [/math] и пусть оно максимальной длины. Проводим [math] t [/math] экспериментов. [math]{p_i}^t \lt \frac{1}{2n}, [/math] все остальные еще меньше. Суммарная длина отрезков не больше [math]\frac{1}{2}.[/math] Нужно [math] t \ge \log\limits_{p}\frac{1}{2n} [/math]

Sim pic3.JPG Вывод: из любого исходного распределения можно получить любое нужное нам распределение.

См. также

Литература