Участник:Gpevnev — различия между версиями
Gpevnev (обсуждение | вклад) |
|||
Строка 15: | Строка 15: | ||
== Пример использования для архитектуры Seq2Seq == | == Пример использования для архитектуры Seq2Seq == | ||
+ | === Базовая архитектура Seq2Seq === | ||
+ | |||
+ | [[File:Seq2SeqBasic.png|450px|thumb]] | ||
+ | |||
Данный пример рассматривает применение механизма внимания в задаче машинного перевода в применении к архитектуре ''Seq2Seq''. | Данный пример рассматривает применение механизма внимания в задаче машинного перевода в применении к архитектуре ''Seq2Seq''. | ||
Строка 21: | Строка 25: | ||
''Encoder'' {{---}} принимает предложение на языке ''A'' и сжимает его в вектор скрытого состояния. | ''Encoder'' {{---}} принимает предложение на языке ''A'' и сжимает его в вектор скрытого состояния. | ||
''Decoder'' {{---}} выдает слово на языке ''B'', принимает последнее скрытое состояние из энкодера и предыдущее предыдущее предсказаное слово. | ''Decoder'' {{---}} выдает слово на языке ''B'', принимает последнее скрытое состояние из энкодера и предыдущее предыдущее предсказаное слово. | ||
− | |||
− | |||
Версия 14:09, 21 марта 2020
Механизм внимания в рекуррентных нейронных сетях (англ. attention mechanism, attention model) — дополнительный слой используемый в рекуррентных нейронных сетях для "обращения внимания" последующих слоев сети на скрытое состояние нейронной сети в момент времени .
Содержание
Обобщенное описание
Рекуррентные нейронные сети используются при обработке данных, для которых важна их последовательность. В классическом случае применения РНН как результат используется только последнее скрытое состояние , где - длинна последовательности входных данных. Использование механизма внимания позволяет использовать информацию полученную не только из последнего скрытого состояниния, но и из скрытого расстояния для любого .
Обычно слой использующийся для механизма внимания представляет собой обычную, чаще всего однослойную нейронную сеть на вход которой подаются
, а также вектор в котором содержится некий контекст зависящий от конкретно задачи (пример для задачи машинного перевода использующего Seq2Seq арихитектуру есть ниже).Выходом данного слоя будет являтся последовательность
- оценки на основании которых на скрытое состояние будет "обращено внимание".Далее для нормализации значений
используется . ТогдаДалее считается
(англ. context vector)Резултатом работы слоя внимания является
который содержит в себе информацию обо всех скрытых состоянях пропорционально оценке .Пример использования для архитектуры Seq2Seq
Базовая архитектура Seq2Seq
Данный пример рассматривает применение механизма внимания в задаче машинного перевода в применении к архитектуре Seq2Seq.
Seq2Seq состоит из двух РНН - Encoder и Decoder.
Encoder — принимает предложение на языке A и сжимает его в вектор скрытого состояния. Decoder — выдает слово на языке B, принимает последнее скрытое состояние из энкодера и предыдущее предыдущее предсказаное слово.
При добавлении механизма в данную архитектуру между РНН Encoder и Decoder слоя механизма внимания процесс