Механизм внимания — различия между версиями
Gpevnev (обсуждение | вклад) |
Gpevnev (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | '''Механизм внимания | + | '''Механизм внимания''' (англ. ''attention mechanism'', ''attention model'') {{---}} техника используемая в [[:Рекуррентные_нейронные_сети|рекуррентных нейронных сетях]] (сокращенно ''RNN'') и [[:Сверточные_нейронные_сети|сверточных нейронных сетях]] (сокр. ''CNN'') для "обращения внимания" на определенные части входных данных в зависимости от текущего контекста. |
− | + | слоев сети на скрытое состояние нейронной сети <math>h_t</math> в момент времени <math>t</math>. | |
+ | Изначально механизм внимания был представлен в [https://arxiv.org/abs/1409.0473 статье] описывыющей данную технику и ее [[:Механизм_внимания#Пример использования для архитектуры Seq2seq|применение]] именно в ''Seq2seq''<ref>[https://en.wikipedia.org/wiki/Seq2seq Wiki -- ''Seq2seq'']</ref> сетях и лишь позже был использован в [https://arxiv.org/abs/1502.03044 статье] применительно к генерации описания изображений. | ||
+ | |||
+ | Изначально механизм внимания был представлен в контексте [[:Рекуррентные_нейронные_сети|рекуррентных]] ''Seq2seq'' сетей <ref>https://arxiv.org/abs/1409.0473 статье</ref> и был использован для лучшего вывода закономерностей между словами находящимися на большом расстоянии друг от друга в задаче машинного перевода. После успеха этой методики в машинном переводе последовали ее внедрения в других задачах [[:Обработка_естественного_языка|обработки естественного языка]] и применения к [[:Сверточные_нейронные_сети|CNN]] для генерации описания изображения<ref>https://arxiv.org/abs/1502.03044</ref> и GAN <ref>SAGAN</ref>. | ||
== Обобщенное описание == | == Обобщенное описание == | ||
[[File:AttentionGeneral.png|350px|thumb|Обобщенное описание механизма внимания]] | [[File:AttentionGeneral.png|350px|thumb|Обобщенное описание механизма внимания]] | ||
[[:Рекуррентные_нейронные_сети|RNN]] используются при обработке данных, для которых важна их последовательность. В классическом случае применения [[:Рекуррентные_нейронные_сети|RNN]] результатом является только последнее скрытое состояние <math>h_m</math>, где <math>m</math> {{---}} длина последовательности входных данных. Использование механизма внимания позволяет использовать информацию полученную не только из последнего скрытого состояниния, но и любого скрытого состояния <math>h_t</math> для любого <math>t</math>. | [[:Рекуррентные_нейронные_сети|RNN]] используются при обработке данных, для которых важна их последовательность. В классическом случае применения [[:Рекуррентные_нейронные_сети|RNN]] результатом является только последнее скрытое состояние <math>h_m</math>, где <math>m</math> {{---}} длина последовательности входных данных. Использование механизма внимания позволяет использовать информацию полученную не только из последнего скрытого состояниния, но и любого скрытого состояния <math>h_t</math> для любого <math>t</math>. | ||
− | Обычно слой использующийся для механизма внимания представляет собой обычную, чаще всего однослойную, нейронную сеть на вход которой подаются <math>h_t, t = 1 \ \ldots m</math>, а также вектор <math>d</math> в котором содержится некий контекст зависящий от конкретно задачи. | + | Обычно слой использующийся для механизма внимания представляет собой обычную, чаще всего однослойную, нейронную сеть на вход которой подаются <math>h_t, t = 1 \ \ldots m</math>, а также вектор <math>d</math> в котором содержится некий контекст зависящий от конкретно задачи. |
Выходом данного слоя будет являтся вектор <math>s</math> (англ. ''score'') {{---}} оценки на основании которых на скрытое состояние <math>h_i</math> будет "обращено внимание". | Выходом данного слоя будет являтся вектор <math>s</math> (англ. ''score'') {{---}} оценки на основании которых на скрытое состояние <math>h_i</math> будет "обращено внимание". |
Версия 12:05, 22 марта 2020
Механизм внимания (англ. attention mechanism, attention model) — техника используемая в рекуррентных нейронных сетях (сокращенно RNN) и сверточных нейронных сетях (сокр. CNN) для "обращения внимания" на определенные части входных данных в зависимости от текущего контекста.
слоев сети на скрытое состояние нейронной сети
в момент времени .Изначально механизм внимания был представлен в статье описывыющей данную технику и ее применение именно в Seq2seq[1] сетях и лишь позже был использован в статье применительно к генерации описания изображений.
Изначально механизм внимания был представлен в контексте рекуррентных Seq2seq сетей [2] и был использован для лучшего вывода закономерностей между словами находящимися на большом расстоянии друг от друга в задаче машинного перевода. После успеха этой методики в машинном переводе последовали ее внедрения в других задачах обработки естественного языка и применения к CNN для генерации описания изображения[3] и GAN [4].
Содержание
Обобщенное описание
RNN используются при обработке данных, для которых важна их последовательность. В классическом случае применения RNN результатом является только последнее скрытое состояние , где — длина последовательности входных данных. Использование механизма внимания позволяет использовать информацию полученную не только из последнего скрытого состояниния, но и любого скрытого состояния для любого .
Обычно слой использующийся для механизма внимания представляет собой обычную, чаще всего однослойную, нейронную сеть на вход которой подаются
, а также вектор в котором содержится некий контекст зависящий от конкретно задачи.Выходом данного слоя будет являтся вектор
(англ. score) — оценки на основании которых на скрытое состояние будет "обращено внимание".Далее для нормализации значений [5]. Тогда
используетсяздесь используется благодоря своим свойствам:
Далее считается
(англ. context vector)
Результатом работы слоя внимания является
который, содержит в себе информацию обо всех скрытых состоянях пропорционально оценке .Пример использования для архитектуры Seq2seq
Пример добавления механизма внимания в Seq2seq сеть поможет лучше понять его предназначение. Изначально в оригинальной статье[6] применяется механизм внимания в контексте именно Seq2seq сети.
Несмотря на то, что нейронные сети рассматриваются как "черный ящик" и интерпретировать их внутренности в понятных человеку терминах часто невозможно, все же механизм внимания интуитивно понятный людям смог улучшить результаты машинного перевода для алгоритма используемого в статье.
Базовая архитектура Seq2seq
Данный пример рассматривает применение механизма внимания в задаче машинного перевода в применении к архитектуре Seq2seq.
Seq2seq состоит из двух RNN — Энкодера и Декодера.
Энкодер — принимает предложение на языке A и сжимает его в вектор скрытого состояния.
Декодер — выдает слово на языке B, принимает последнее скрытое состояние энкодера и предыдущее предыдущее предсказаное слово.
Рассмотрим пример работы Seq2seq сети:
— слова в предложении на языке A.
— скрытое состояние энкодера.
Блоки энкодера (зеленый) — блоки энкодера получающие на вход
и передающие скрытое состояние на следующую итерацию.— скрытое состояние декодера.
— слова в предложении на языке B.
Блоки декодера (фиолетовый) — блоки декодера получающие на вход
или специальный токен start в случае первой итерации и возвращаюшие — слова в предложении на языке B. Передают — скрытое состояние декодера на следующую итерацию. Перевод считается завершенным при , равном специальному токену end.Применение механизма внимания для Seq2seq
При добавлении механизма в данную архитектуру между RNN Энкодер и Декодер слоя механизма внимания получится следуюшая схема:
Здесь
имееют те же назначения, что и в варианте без механизма внимания.Аггрегатор скрытых состояний энкодера (желтый) — аггрегирует в себе все вектора
и возвращает всю последовательность векторов .— вектор контекста на итерации .
Блоки механизма внимания (красный) — механизм внимания. Принимает
и , возвращает .Блоки декодера (фиолетовый) — по сравнению с обычной Seq2seq сетью меняются входные данные. Теперь на итерации
на вход подается не , а конкатенация и .Таким образом при помощи механизма внимания достигается "фокусирование" декодера на определенных скрытых состояниях. В случаях машинного перевода эта возможность помогает декодеру предсказывать на какие скрытые сосояния при исходных определенных словах на языке A необходимо обратить больше внимания при переводе данного слова на язык B.
См. также
Источники информации
- Лекция Andrew Ng о механизме внимания в NLP
- Статья с подробно разборанными примерами и кодом на Python и TensorFlow