Механизм внимания — различия между версиями
Gpevnev (обсуждение | вклад) |
Gpevnev (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
'''Механизм внимания''' (англ. ''attention mechanism'', ''attention model'') {{---}} техника используемая в [[:Рекуррентные_нейронные_сети|рекуррентных нейронных сетях]] (сокр. ''RNN'') и [[:Сверточные_нейронные_сети|сверточных нейронных сетях]] (сокр. ''CNN'') для "обращения внимания" на определенные части входных данных в зависимости от текущего контекста. | '''Механизм внимания''' (англ. ''attention mechanism'', ''attention model'') {{---}} техника используемая в [[:Рекуррентные_нейронные_сети|рекуррентных нейронных сетях]] (сокр. ''RNN'') и [[:Сверточные_нейронные_сети|сверточных нейронных сетях]] (сокр. ''CNN'') для "обращения внимания" на определенные части входных данных в зависимости от текущего контекста. | ||
− | Изначально механизм внимания был представлен в контексте [[:Рекуррентные_нейронные_сети|рекуррентных]] ''Seq2seq'' сетей <ref>https://arxiv.org/abs/1409.0473 статье</ref> для обращения внимания блоков декодеров на скрытые состояния [[:Рекуррентные_нейронные_сети|RNN]] энкодера для любой итерации, а не только последней | + | Изначально механизм внимания был представлен в контексте [[:Рекуррентные_нейронные_сети|рекуррентных]] ''Seq2seq'' сетей <ref>https://arxiv.org/abs/1409.0473 статье</ref> для обращения внимания блоков декодеров на скрытые состояния [[:Рекуррентные_нейронные_сети|RNN]] энкодера для любой итерации, а не только последней. |
После успеха этой методики в машинном переводе последовали ее внедрения в других задачах [[:Обработка_естественного_языка|обработки естественного языка]] и применения к [[:Сверточные_нейронные_сети|CNN]] для генерации описания изображения<ref>https://arxiv.org/abs/1502.03044</ref> и GAN <ref>SAGAN</ref>. | После успеха этой методики в машинном переводе последовали ее внедрения в других задачах [[:Обработка_естественного_языка|обработки естественного языка]] и применения к [[:Сверточные_нейронные_сети|CNN]] для генерации описания изображения<ref>https://arxiv.org/abs/1502.03044</ref> и GAN <ref>SAGAN</ref>. | ||
Строка 26: | Строка 26: | ||
Результатом работы слоя внимания является <math>c</math> который, содержит в себе информацию обо всех скрытых состоянях <math>h_i</math> пропорционально оценке <math>e_i</math>. | Результатом работы слоя внимания является <math>c</math> который, содержит в себе информацию обо всех скрытых состоянях <math>h_i</math> пропорционально оценке <math>e_i</math>. | ||
− | == Пример использования для | + | ==Пример использования для задачи машинного перевода в ''Seq2seq'' сетях== |
Пример добавления механизма внимания в ''Seq2seq'' сеть поможет лучше понять его предназначение. | Пример добавления механизма внимания в ''Seq2seq'' сеть поможет лучше понять его предназначение. | ||
− | Изначально в оригинальной статье<ref>[https://arxiv.org/abs/1409.0473 Neural Machine Translation by Jointly Learning to Align and Translate]</ref> | + | Изначально в оригинальной статье<ref>[https://arxiv.org/abs/1409.0473 Neural Machine Translation by Jointly Learning to Align and Translate]</ref>, представляющей механизм внимания, он применяется |
+ | в контексте именно Seq2seq сети в задаче машинного перевода. | ||
Несмотря на то, что нейронные сети рассматриваются как "черный ящик" и интерпретировать их внутренности в понятных человеку терминах часто невозможно, все же механизм внимания интуитивно понятный людям смог улучшить результаты машинного перевода для алгоритма используемого в статье. | Несмотря на то, что нейронные сети рассматриваются как "черный ящик" и интерпретировать их внутренности в понятных человеку терминах часто невозможно, все же механизм внимания интуитивно понятный людям смог улучшить результаты машинного перевода для алгоритма используемого в статье. | ||
+ | |||
+ | Успех этого использования этого подхода в задаче машинного перевода обусловлен лучшим выводом закономерностей между словами находящимися на большом расстоянии друг от друга. Несмотря на то, что ''LSTM'' и ''GRU'' блоки используются именно для улучшения передачи информации с предыдущих итераций ''RNN'' их основная проблема заключается в том, что влияние предыдущих состояний на текущее уменьшается экспоненциально от расстояния между словами, в то же время механизм внимания улучшает этот показатель до линейного. | ||
=== Базовая архитектура ''Seq2seq'' === | === Базовая архитектура ''Seq2seq'' === |
Версия 12:25, 22 марта 2020
Механизм внимания (англ. attention mechanism, attention model) — техника используемая в рекуррентных нейронных сетях (сокр. RNN) и сверточных нейронных сетях (сокр. CNN) для "обращения внимания" на определенные части входных данных в зависимости от текущего контекста.
Изначально механизм внимания был представлен в контексте рекуррентных Seq2seq сетей [1] для обращения внимания блоков декодеров на скрытые состояния RNN энкодера для любой итерации, а не только последней.
После успеха этой методики в машинном переводе последовали ее внедрения в других задачах обработки естественного языка и применения к CNN для генерации описания изображения[2] и GAN [3].
Содержание
Обобщенное описание
RNN используются при обработке данных, для которых важна их последовательность. В классическом случае применения RNN результатом является только последнее скрытое состояние , где — длина последовательности входных данных. Использование механизма внимания позволяет использовать информацию полученную не только из последнего скрытого состояниния, но и любого скрытого состояния для любого .
Обычно слой использующийся для механизма внимания представляет собой обычную, чаще всего однослойную, нейронную сеть на вход которой подаются
, а также вектор в котором содержится некий контекст зависящий от конкретно задачи.Выходом данного слоя будет являтся вектор
(англ. score) — оценки на основании которых на скрытое состояние будет "обращено внимание".Далее для нормализации значений [4]. Тогда
используетсяздесь используется благодоря своим свойствам:
Далее считается
(англ. context vector)
Результатом работы слоя внимания является
который, содержит в себе информацию обо всех скрытых состоянях пропорционально оценке .Пример использования для задачи машинного перевода в Seq2seq сетях
Пример добавления механизма внимания в Seq2seq сеть поможет лучше понять его предназначение. Изначально в оригинальной статье[5], представляющей механизм внимания, он применяется
в контексте именно Seq2seq сети в задаче машинного перевода.
Несмотря на то, что нейронные сети рассматриваются как "черный ящик" и интерпретировать их внутренности в понятных человеку терминах часто невозможно, все же механизм внимания интуитивно понятный людям смог улучшить результаты машинного перевода для алгоритма используемого в статье.
Успех этого использования этого подхода в задаче машинного перевода обусловлен лучшим выводом закономерностей между словами находящимися на большом расстоянии друг от друга. Несмотря на то, что LSTM и GRU блоки используются именно для улучшения передачи информации с предыдущих итераций RNN их основная проблема заключается в том, что влияние предыдущих состояний на текущее уменьшается экспоненциально от расстояния между словами, в то же время механизм внимания улучшает этот показатель до линейного.
Базовая архитектура Seq2seq
Данный пример рассматривает применение механизма внимания в задаче машинного перевода в применении к архитектуре Seq2seq.
Seq2seq состоит из двух RNN — Энкодера и Декодера.
Энкодер — принимает предложение на языке A и сжимает его в вектор скрытого состояния.
Декодер — выдает слово на языке B, принимает последнее скрытое состояние энкодера и предыдущее предыдущее предсказаное слово.
Рассмотрим пример работы Seq2seq сети:
— слова в предложении на языке A.
— скрытое состояние энкодера.
Блоки энкодера (зеленый) — блоки энкодера получающие на вход
и передающие скрытое состояние на следующую итерацию.— скрытое состояние декодера.
— слова в предложении на языке B.
Блоки декодера (фиолетовый) — блоки декодера получающие на вход
или специальный токен start в случае первой итерации и возвращаюшие — слова в предложении на языке B. Передают — скрытое состояние декодера на следующую итерацию. Перевод считается завершенным при , равном специальному токену end.Применение механизма внимания для Seq2seq
При добавлении механизма в данную архитектуру между RNN Энкодер и Декодер слоя механизма внимания получится следуюшая схема:
Здесь
имееют те же назначения, что и в варианте без механизма внимания.Аггрегатор скрытых состояний энкодера (желтый) — аггрегирует в себе все вектора
и возвращает всю последовательность векторов .— вектор контекста на итерации .
Блоки механизма внимания (красный) — механизм внимания. Принимает
и , возвращает .Блоки декодера (фиолетовый) — по сравнению с обычной Seq2seq сетью меняются входные данные. Теперь на итерации
на вход подается не , а конкатенация и .Таким образом при помощи механизма внимания достигается "фокусирование" декодера на определенных скрытых состояниях. В случаях машинного перевода эта возможность помогает декодеру предсказывать на какие скрытые сосояния при исходных определенных словах на языке A необходимо обратить больше внимания при переводе данного слова на язык B.
См. также
Источники информации
- Лекция Andrew Ng о механизме внимания в NLP
- Статья с подробно разборанными примерами и кодом на Python и TensorFlow