Сложение и разность потоков — различия между версиями
(→Лемма о сложении потоков) |
|||
Строка 5: | Строка 5: | ||
|proof= | |proof= | ||
Необходимо проверить, выполняются ли ограничения антисимметричности, пропускной способности и сохранения потока. <br> | Необходимо проверить, выполняются ли ограничения антисимметричности, пропускной способности и сохранения потока. <br> | ||
− | 1) Для подтверждения антисимметричности заметим, что для всех <tex>(u,v) \in V</tex>, справедливо: <br> | + | 1) Для подтверждения антисимметричности заметим, что для всех <tex>(u,v) \in V</tex>, справедливо: <br> |
− | 2) Покажем соблюдение ограничений пропускной способности. Заметим, что <tex>f'(u,v) \le c_f(u,v)</tex> для всех <tex>u,v \in V </tex> и <tex> c_f(u, v) = c(u, v) - f(u, v) </tex>. Тогда | + | <tex> (f + f')(u, v) = f(u,v) + f'(u,v) = -f(v,u) - f'(v,u) </tex> <tex> = -(f(v,u) + f'(v,u)) = -(f + f')(v,u)</tex> |
− | <tex>(f + f')(u,v) = f(u,v) + f'(u,v) \le f(u,v) + (c(u,v) - f(u,v)) = c(u,v) </tex>. | + | |
− | 3) Заметим, что для всех <tex>u \in V - \{s,t\}</tex> справедливо равенство | + | |
− | <tex> \sum\limits_{v\in V} (f + f')(u, v) = \sum\limits_{v\in V} (f(u,v) + f'(u,v)) = \sum\limits_{v\in V} f(u,v) + \sum\limits_{v\in V} f'(u,v) = 0 + 0 = 0</tex | + | 2) Покажем соблюдение ограничений пропускной способности. Заметим, что <tex>f'(u,v) \le c_f(u,v)</tex> для всех <tex>u,v \in V </tex> и <tex> c_f(u, v) = c(u, v) - f(u, v) </tex>. Тогда <br> |
− | <tex> |f + f'| = \sum\limits_{v\in V} (f + f')(s, v) = \sum\limits_{v\in V} (f(s,v) + f'(s,v)) = \sum\limits_{v\in V} f(s,v) + \sum\limits_{v\in V} f'(s,v) = |f| + |f'|</tex> | + | <tex>(f + f')(u,v) = f(u,v) + f'(u,v) \le f(u,v) + (c(u,v) - f(u,v)) = c(u,v) </tex>. |
+ | |||
+ | |||
+ | 3) Заметим, что для всех <tex>u \in V - \{s,t\}</tex> справедливо равенство <br> | ||
+ | <tex> \sum\limits_{v\in V} (f + f')(u, v) = \sum\limits_{v\in V} (f(u,v) + f'(u,v)) = \sum\limits_{v\in V} f(u,v) + \sum\limits_{v\in V} f'(u,v) = 0 + 0 = 0</tex> <br> | ||
+ | <tex> |f + f'| = \sum\limits_{v\in V} (f + f')(s, v) = \sum\limits_{v\in V} (f(s,v) + f'(s,v)) </tex> <tex>= \sum\limits_{v\in V} f(s,v) + \sum\limits_{v\in V} f'(s,v) = |f| + |f'|</tex> | ||
}} | }} | ||
== Литература == | == Литература == | ||
* ''Кормен Т., Лейзерсон Ч., Ривест Р.'' Алгоритмы: построение и анализ.[http://wmate.ru/ebooks/?dl=380&mirror=1] — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296. | * ''Кормен Т., Лейзерсон Ч., Ривест Р.'' Алгоритмы: построение и анализ.[http://wmate.ru/ebooks/?dl=380&mirror=1] — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296. |
Версия 06:25, 22 января 2011
Лемма о сложении потоков
Лемма: |
Пусть - транспортная сеть с источником и стоком , а - поток в . Пусть - остаточная сеть в , порожденная потоком , а - поток в . Тогда сумма потоков , определяемая уравнением , является потоком в , и величина этого потока равна . |
Доказательство: |
Необходимо проверить, выполняются ли ограничения антисимметричности, пропускной способности и сохранения потока.
|
Литература
- Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ.[1] — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296.