Функция Эйлера — различия между версиями
(Большое изменение. Добавил tau, sigma, phi функции, теорему Эйлера, малую теорему Ферма) |
(Добавил Еще теоремы) |
||
Строка 103: | Строка 103: | ||
|proof = Данную теорему можно доказать "напролом", пользуясь формулой для <math>\varphi(d)</math>, а можно более элегантно: | |proof = Данную теорему можно доказать "напролом", пользуясь формулой для <math>\varphi(d)</math>, а можно более элегантно: | ||
− | Рассмотрим <math>n</math> дробей <math>\frac{1}{n}, \frac{2}{n}, \dots , \frac{n}{n}</math>. | + | Рассмотрим <math>n</math> дробей <math>\frac{1}{n}, \frac{2}{n}, \dots , \frac{n}{n}</math>. Каждую дробь представим в виде несократимой дроби <math>\frac{p}{q}</math>. |
− | + | Заметим, что множество значений <math>q</math> - это множество делителей числа <math>n</math>. Так как дробь <math>\frac{p}{q}</math> несократима, то <math>p</math> и <math>q</math> взаимно-просты. Зная, что <math>p \leq q</math>, легко понять, что всего дробей со знаменателем <math>q</math> ровно <math>\varphi(q)</math>. Так как, все <math>n</math> дробей мы представили в несократимом виде, где знаменатель является делителем <math>n</math>, то <math>\displaystyle \sum_{d | n} \varphi(d) = n</math>, так как всего дробей <math>n</math>, что и требовалось доказать. | |
}} | }} |
Версия 15:50, 24 декабря 2020
Содержание
Функция Эйлера
Определение: |
Функция | называется мультипликативной, если для любых взаимно-простых .
Определение: |
Функция Эйлера | - определяется как количество натуральных чисел, не превосходящих и взаимно-простых с .
Теорема (Мультипликативность функции Эйлера): |
Для любых взаимно-простых чисел
|
Доказательство: |
Запишем натуральных чисел, не превосходящих , в виде прямоугольной таблицы с столбцами и строками, располагая первые чисел в первой строке, вторые чисел во второй и т.д.Поскольку и взаимно-просты, то целое взаимно-просто с если и только если оно взаимно-просто как с , так и с . Итак, нужно доказать, что количество чисел в таблице, взаимно-простых с и с равно . Мы знаем, что число взаимно-просто с натуральным если и только если его остаток при делении на взаимно-просто с . Поэтому, числа в таблице, взаимно-простые с , заполняют ровно столбцов таблицы.Давайте рассмотрим Подставив в данные рассуждения последовательных членов арифметической прогрессии . Тогда, если , то остатки всех этих чисел по модулю разные, а значит образуют все множество остатков , причем каждый остаток получается ровно из одного из членов прогрессии. , получим, что в каждом столбце таблицы имеется ровно чисел, взаимно-простых с . Следовательно всего чисел, взаимно-простых и с и с равно , что и требовалось доказать. |
Функции , и , их мультипликативность и значения
Каноническое разложение числа
Функция
Функция
определяется как сумма делителей натурального числаДля простого числа
легко посчитать . При этом легко обобщается для некоторой степени :В силу мультипликативности функции:
Функция
Функция
определяется как число положительных делителей натурального числа :Если
и взаимно-просты, то каждый делитель произведения может быть единственным образом представлен в виде произведения делителей и делителей , и обратно, каждое такое произведение является делителем . Отсюда следует, что функция мультипликативна:Для простого числа
легко посчитать . При этом легко обобщается для некоторой степени :В силу мультипликативности функции:
Функция
Для простого числа
легко посчитать . На некоторую степень формулу можно обобщить:Обосновывается следующим образом: Все не взаимно-простые с
числа в диапазоне от 1 до , очевидно, кратны . Всего таких чисел .В силу мультипликативности функции:
Малая теорема Ферма и теорема Эйлера
Теорема (Теорема Эйлера): |
Если и - взаимно-простые целые числа, то |
Доказательство: |
Число Рассмотрим вычеты по модулю называется вычетом по модулю , если . Вычет называется обратимым вычетом, если существует вычет , что . Заметим, что вычет обратим тогда и только тогда, когда и взаимно-просты. В таком случае, у числа существует всего обратимых вычетов. Пусть - множество всех обратимых вычетов по модулю . . Так как и взаимно-просты, то вычет обратим. Пусть - все обратимые вычеты по модулю . Тогда вычет , равный произведению всех обратимых вычетов, тоже обратим. Заметим, что отображение , заданное формулой является биекцией. В таком случае в выражении , в правой части стоит произведение всех обратимых вычетов, но взятое в другом порядке. Тогда . Умножая обе части на вычет, обратный к , получим, что , что и требовалось доказать. |
Следствием теоремы Эйлера является малая теорема Ферма. У нее также есть доказательство без использования более общей теоремы Эйлера, однако его мы приводить не будем.
Теорема (Малая теорема Ферма): |
Если целое число и простое число - взаимно-просты, то |
Доказательство: |
Так как | - простое, то . Воспользуемся теоремой Эйлера, тогда , что и требовалось доказать.
Еще теоремы, связанные с функцией Эйлера
Теорема: |
Для любого натурального числа выполнено равенство |
Доказательство: |
Данную теорему можно доказать "напролом", пользуясь формулой для , а можно более элегантно:Рассмотрим Заметим, что множество значений дробей . Каждую дробь представим в виде несократимой дроби . - это множество делителей числа . Так как дробь несократима, то и взаимно-просты. Зная, что , легко понять, что всего дробей со знаменателем ровно . Так как, все дробей мы представили в несократимом виде, где знаменатель является делителем , то , так как всего дробей , что и требовалось доказать. |
Старые записи
Примеры:
, ,
, .
Свойства функции Эйлера
- 1. Доказательство: простое, .
- Логически понятно, если строго, то выводится из 2 свойства.
, p — - 2. Пусть — каноническое разложение числа a, тогда
- Доказательство: Пусть НОД. Тогда есть число значений , равных единице. Возьмем функцию, которая равна единице, если , и равна нулю в остальных случаях. Вот такая функция : , где — функция Мебиуса. Отсюда . Поскольку справа сумма в скобках берется по всем делителям d числа , то d делит x и a . Значит в первой сумме справа в суммировании участвуют только те x , которые кратны d . Таких x среди чисел ровно штук. Получается, что . пробегает числа , положим —
- 3. Функция Эйлера является мультипликативной .
- Вытекает из первого свойства.