Функция Эйлера — различия между версиями
(Удалил старые записи) |
(Добавил ожерелья) |
||
Строка 94: | Строка 94: | ||
}} | }} | ||
− | == | + | == Различные свойства функции Эйлера == |
{{Теорема | {{Теорема | ||
Строка 107: | Строка 107: | ||
}} | }} | ||
+ | |||
+ | |||
+ | == Применение теоремы Эйлера в других задачах == | ||
+ | |||
+ | ==== Задача об ожерельях ==== | ||
+ | |||
+ | {{Задача | ||
+ | |definition= | ||
+ | Требуется посчитать количество ожерелий из <tex>n</tex> бусинок, каждая из которых может быть покрашена в один из <tex> k </tex> цветов. При сравнении двух ожерелий их можно поворачивать, но не переворачивать (т.е. разрешается сделать циклический сдвиг).}} | ||
+ | |||
+ | В ходе решения задачи мы приходим к формуле <tex>|C| =</tex> <tex> \dfrac{1} {n}</tex><tex>\sum\limits_{i = 1}^{n} k^{\mathrm{gcd}(i,n)}</tex> | ||
+ | |||
+ | Мы можем улучшить эту формулу, если рассмотрим выражение <math>\mathrm{gcd}(i,n)</math>. Пусть <math>\mathrm{gcd}(i,n) = q</math>, тогда числа <math>i</math> и <math>n</math> оба делятся на <math>q</math> и больше не имеют общих делителей. Тогда <math>\mathrm{gcd}(\frac{i}{q},\frac{n}{q}) = 1</math>. Таких натуральных <math>i \in [1 ; n]</math> и имеющих <math>\mathrm{gcd}(i,n) = q</math> ровно <tex>\varphi\left(\dfrac{n}{q}\right)</tex>. | ||
+ | |||
+ | Пользуясь функцией Эйлера, мы можем привести формулу к финальному виду <tex>|C| =</tex> <tex> \dfrac{1} {n}</tex><tex>\sum\limits_{q|n}\varphi\left(\dfrac{n}{q}\right)k^q</tex>. |
Версия 16:22, 24 декабря 2020
Содержание
Функция Эйлера
Определение: |
Функция | называется мультипликативной, если для любых взаимно-простых .
Определение: |
Функция Эйлера | - определяется как количество натуральных чисел, не превосходящих и взаимно-простых с .
Теорема (Мультипликативность функции Эйлера): |
Для любых взаимно-простых чисел
|
Доказательство: |
Запишем натуральных чисел, не превосходящих , в виде прямоугольной таблицы с столбцами и строками, располагая первые чисел в первой строке, вторые чисел во второй и т.д.Поскольку и взаимно-просты, то целое взаимно-просто с если и только если оно взаимно-просто как с , так и с . Итак, нужно доказать, что количество чисел в таблице, взаимно-простых с и с равно . Мы знаем, что число взаимно-просто с натуральным если и только если его остаток при делении на взаимно-просто с . Поэтому, числа в таблице, взаимно-простые с , заполняют ровно столбцов таблицы.Давайте рассмотрим Подставив в данные рассуждения последовательных членов арифметической прогрессии . Тогда, если , то остатки всех этих чисел по модулю разные, а значит образуют все множество остатков , причем каждый остаток получается ровно из одного из членов прогрессии. , получим, что в каждом столбце таблицы имеется ровно чисел, взаимно-простых с . Следовательно всего чисел, взаимно-простых и с и с равно , что и требовалось доказать. |
Функции , и , их мультипликативность и значения
Каноническое разложение числа
Функция
Функция
определяется как сумма делителей натурального числаДля простого числа
легко посчитать . При этом легко обобщается для некоторой степени :В силу мультипликативности функции:
Функция
Функция
определяется как число положительных делителей натурального числа :Если
и взаимно-просты, то каждый делитель произведения может быть единственным образом представлен в виде произведения делителей и делителей , и обратно, каждое такое произведение является делителем . Отсюда следует, что функция мультипликативна:Для простого числа
легко посчитать . При этом легко обобщается для некоторой степени :В силу мультипликативности функции:
Функция
Для простого числа
легко посчитать . На некоторую степень формулу можно обобщить:Обосновывается следующим образом: Все не взаимно-простые с
числа в диапазоне от 1 до , очевидно, кратны . Всего таких чисел .В силу мультипликативности функции:
Малая теорема Ферма и теорема Эйлера
Теорема (Теорема Эйлера): |
Если и - взаимно-простые целые числа, то |
Доказательство: |
Число Рассмотрим вычеты по модулю называется вычетом по модулю , если . Вычет называется обратимым вычетом, если существует вычет , что . Заметим, что вычет обратим тогда и только тогда, когда и взаимно-просты. В таком случае, у числа существует всего обратимых вычетов. Пусть - множество всех обратимых вычетов по модулю . . Так как и взаимно-просты, то вычет обратим. Пусть - все обратимые вычеты по модулю . Тогда вычет , равный произведению всех обратимых вычетов, тоже обратим. Заметим, что отображение , заданное формулой является биекцией. В таком случае в выражении , в правой части стоит произведение всех обратимых вычетов, но взятое в другом порядке. Тогда . Умножая обе части на вычет, обратный к , получим, что , что и требовалось доказать. |
Следствием теоремы Эйлера является малая теорема Ферма. У нее также есть доказательство без использования более общей теоремы Эйлера, однако его мы приводить не будем.
Теорема (Малая теорема Ферма): |
Если целое число и простое число - взаимно-просты, то |
Доказательство: |
Так как | - простое, то . Воспользуемся теоремой Эйлера, тогда , что и требовалось доказать.
Различные свойства функции Эйлера
Теорема: |
Для любого натурального числа выполнено равенство |
Доказательство: |
Данную теорему можно доказать "напролом", пользуясь формулой для , а можно более элегантно:Рассмотрим Заметим, что множество значений дробей . Каждую дробь представим в виде несократимой дроби . - это множество делителей числа . Так как дробь несократима, то и взаимно-просты. Зная, что , легко понять, что всего дробей со знаменателем ровно . Так как, все дробей мы представили в несократимом виде, где знаменатель является делителем , то , так как всего дробей , что и требовалось доказать. |
Применение теоремы Эйлера в других задачах
Задача об ожерельях
Задача: |
Требуется посчитать количество ожерелий из | бусинок, каждая из которых может быть покрашена в один из цветов. При сравнении двух ожерелий их можно поворачивать, но не переворачивать (т.е. разрешается сделать циклический сдвиг).
В ходе решения задачи мы приходим к формуле
Мы можем улучшить эту формулу, если рассмотрим выражение
. Пусть , тогда числа и оба делятся на и больше не имеют общих делителей. Тогда . Таких натуральных и имеющих ровно .Пользуясь функцией Эйлера, мы можем привести формулу к финальному виду
.