Обсуждение участника:MetaMockery — различия между версиями
(→Функция Эйлера) |
(→Функция Эйлера) |
||
Строка 3: | Строка 3: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | ''Функция Эйлера'' <tex>\varphi (n) </tex> {{---}} определяется как количество натуральных чисел, не превосходящих <tex>n</tex> и взаимно | + | ''Функция Эйлера'' <tex>\varphi (n) </tex> {{---}} определяется как количество натуральных чисел, не превосходящих <tex>n</tex> и взаимно простых с <tex>n</tex>. |
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Функция <tex>f : \mathbb{N} \to \mathbb{Z} </tex> называется ''мультипликативной'', если <tex>f(mn) = f(m)f(n)</tex> для любых взаимно | + | Функция <tex>f : \mathbb{N} \to \mathbb{Z} </tex> называется ''мультипликативной'', если <tex>f(mn) = f(m)f(n)</tex> для любых взаимно простых <tex>m, n</tex>. |
}} | }} | ||
{{Теорема | {{Теорема | ||
|about = Мультипликативность функции Эйлера | |about = Мультипликативность функции Эйлера | ||
− | |statement = Для любых взаимно | + | |statement = Для любых взаимно простых чисел <tex>m, n</tex> |
: <math>\varphi(mn)=\varphi(m)\varphi(n)</math> | : <math>\varphi(mn)=\varphi(m)\varphi(n)</math> | ||
|proof = | |proof = | ||
Запишем <math>n \cdot m</math> натуральных чисел, не превосходящих <math>n \cdot m</math>, в виде прямоугольной таблицы с <math>n</math> столбцами и <math>m</math> строками, располагая первые <math>n</math> чисел в первой строке, вторые <math>n</math> чисел во второй и т.д. | Запишем <math>n \cdot m</math> натуральных чисел, не превосходящих <math>n \cdot m</math>, в виде прямоугольной таблицы с <math>n</math> столбцами и <math>m</math> строками, располагая первые <math>n</math> чисел в первой строке, вторые <math>n</math> чисел во второй и т.д. | ||
− | Поскольку <math>n</math> и <math>m</math> взаимно | + | Поскольку <math>n</math> и <math>m</math> взаимно просты, то целое <math>s</math> взаимно просто с <math>n \cdot m</math> если и только если оно взаимно просто как с <math>n</math>, так и с <math>m</math>. Итак, нужно доказать, что количество чисел в таблице, взаимно простых с <math>n</math> и с <math>m</math> равно <math>\varphi(m)\varphi(n)</math>. Мы знаем, что число <math>s</math> взаимно просто с натуральным <math>k</math> если и только если его остаток при делении на <math>k</math> взаимно просто с <math>k</math>. Поэтому, числа в таблице, взаимно простые с <math>n</math>, заполняют ровно <math>\varphi(n)</math> столбцов таблицы. |
Давайте рассмотрим <math>m</math> последовательных членов арифметической прогрессии <math>a, a + d, \dots , a + (m - 1)d</math>. Тогда, если <math>GCD(d, m) = 1</math>, то остатки всех этих <math>m</math> чисел по модулю <math>m</math> разные, а значит образуют все множество остатков <math>\{0, \dots , m - 1\}</math>, причем каждый остаток получается ровно из одного из членов прогрессии. | Давайте рассмотрим <math>m</math> последовательных членов арифметической прогрессии <math>a, a + d, \dots , a + (m - 1)d</math>. Тогда, если <math>GCD(d, m) = 1</math>, то остатки всех этих <math>m</math> чисел по модулю <math>m</math> разные, а значит образуют все множество остатков <math>\{0, \dots , m - 1\}</math>, причем каждый остаток получается ровно из одного из членов прогрессии. | ||
− | Подставив в данные рассуждения <math>d = n</math>, получим, что в каждом столбце таблицы имеется ровно <math>\varphi(m)</math> чисел, взаимно | + | Подставив в данные рассуждения <math>d = n</math>, получим, что в каждом столбце таблицы имеется ровно <math>\varphi(m)</math> чисел, взаимно простых с <math>m</math>. Следовательно всего чисел, взаимно простых и с <math>n</math> и с <math>m</math> равно <math>\varphi(m)\varphi(n)</math>, что и требовалось доказать. |
}} | }} | ||
Версия 00:03, 26 декабря 2020
Содержание
Функция Эйлера
Определение: |
Функция Эйлера | — определяется как количество натуральных чисел, не превосходящих и взаимно простых с .
Определение: |
Функция | называется мультипликативной, если для любых взаимно простых .
Теорема (Мультипликативность функции Эйлера): |
Для любых взаимно простых чисел
|
Доказательство: |
Запишем натуральных чисел, не превосходящих , в виде прямоугольной таблицы с столбцами и строками, располагая первые чисел в первой строке, вторые чисел во второй и т.д.Поскольку и взаимно просты, то целое взаимно просто с если и только если оно взаимно просто как с , так и с . Итак, нужно доказать, что количество чисел в таблице, взаимно простых с и с равно . Мы знаем, что число взаимно просто с натуральным если и только если его остаток при делении на взаимно просто с . Поэтому, числа в таблице, взаимно простые с , заполняют ровно столбцов таблицы.Давайте рассмотрим Подставив в данные рассуждения последовательных членов арифметической прогрессии . Тогда, если , то остатки всех этих чисел по модулю разные, а значит образуют все множество остатков , причем каждый остаток получается ровно из одного из членов прогрессии. , получим, что в каждом столбце таблицы имеется ровно чисел, взаимно простых с . Следовательно всего чисел, взаимно простых и с и с равно , что и требовалось доказать. |
Функции , и , их мультипликативность и значения
Каноническое разложение числа
Функция
Функция
определяется как сумма делителей натурального числа :Для простого числа
легко посчитать . При этом легко обобщается для некоторой степени :В силу мультипликативности функции:
Функция
Функция
определяется как число положительных делителей натурального числа :Если
и взаимно-просты, то каждый делитель произведения может быть единственным образом представлен в виде произведения делителей и делителей , и обратно, каждое такое произведение является делителем . Отсюда следует, что функция мультипликативна:Для простого числа
легко посчитать . При этом легко обобщается для некоторой степени :В силу мультипликативности функции:
Функция
Для простого числа
легко посчитать . На некоторую степень формулу можно обобщить:Обосновывается следующим образом: Все не взаимно-простые с
числа в диапазоне от 1 до , очевидно, кратны . Всего таких чисел .В силу мультипликативности функции:
Малая теорема Ферма и теорема Эйлера
Теорема (Теорема Эйлера): |
Если и - взаимно-простые целые числа, то |
Доказательство: |
Число Рассмотрим вычеты по модулю называется вычетом по модулю , если . Вычет называется обратимым вычетом, если существует вычет , что . Заметим, что вычет обратим тогда и только тогда, когда и взаимно-просты. В таком случае, у числа существует всего обратимых вычетов. Пусть - множество всех обратимых вычетов по модулю . . Так как и взаимно-просты, то вычет обратим. Пусть - все обратимые вычеты по модулю . Тогда вычет , равный произведению всех обратимых вычетов, тоже обратим. Заметим, что отображение , заданное формулой является биекцией. В таком случае в выражении , в правой части стоит произведение всех обратимых вычетов, но взятое в другом порядке. Тогда . Умножая обе части на вычет, обратный к , получим, что , что и требовалось доказать. |
Следствием теоремы Эйлера является малая теорема Ферма. У нее также есть доказательство без использования более общей теоремы Эйлера, однако его мы приводить не будем.
Теорема (Малая теорема Ферма): |
Если целое число и простое число - взаимно-просты, то |
Доказательство: |
Так как | - простое, то . Воспользуемся теоремой Эйлера, тогда , что и требовалось доказать.
Различные свойства функции Эйлера
Теорема: |
Если для каких-то натуральных чисел и верно, что , тогда верно и |
Доказательство: |
Воспользуемся формулой для .При этом, так как , то , а такжеЗначит , а значит , что и требовалось доказать. |
Теорема: |
Для любого натурального числа выполнено равенство |
Доказательство: |
Данную теорему можно доказать "напролом", пользуясь формулой для , а можно более элегантно:Рассмотрим Заметим, что множество значений дробей . Каждую дробь представим в виде несократимой дроби . — это множество делителей числа . Так как дробь несократима, то и взаимно-просты. Зная, что , легко понять, что всего дробей со знаменателем ровно . Так как, все дробей мы представили в несократимом виде, где знаменатель является делителем , то , так как всего дробей , что и требовалось доказать. |
Теорема (Обобщённая мультипликативность): |
Пусть и — любые два натуральных числа, а , тогда:
|
Доказательство: |
Пусть тогда причем в общем случае и Поэтому можно записать:Здесь первые делителей являются также делителями а последние делителей являются делителями Распишем:В силу мультипликативности функции Эйлера, а также с учётом формулы где — простое, получаем:В первой строке записано во второй — а третью можно представить, как Поэтому: |
Применение теоремы Эйлера в других задачах
Задача об ожерельях
Задача: |
Требуется посчитать количество ожерелий из | бусинок, каждая из которых может быть покрашена в один из цветов. При сравнении двух ожерелий их можно поворачивать, но не переворачивать (т.е. разрешается сделать циклический сдвиг).
В ходе решения задачи мы приходим к формуле
Мы можем улучшить эту формулу, если рассмотрим выражение
. Пусть , тогда числа и оба делятся на и больше не имеют общих делителей. Тогда . Таких натуральных и имеющих ровно .Пользуясь функцией Эйлера, мы можем привести формулу к финальному виду
.Алгоритм
Используя доказанные выше свойства функции, получим алгоритм нахождения
через факторизацию числа, работающий за .function phi (n): result = n i = 2 while (i*i <= n): if n % i == 0: while n % i == 0: n /= i result -= result / i i++ if (n > 1): result -= result/n return result