Представление знаний — различия между версиями
(Новая страница: «'''Представление знаний''' (англ. ''knowledge representation'') — направление в исследованиях искусстве…») |
Zevgeniy (обсуждение | вклад) м (UI) |
||
Строка 45: | Строка 45: | ||
===Открытые проблемы=== | ===Открытые проблемы=== | ||
− | 1 | + | 1. Выявление лучших практик для построения графов знаний. |
− | 2 | + | 2. Динамически изменяемые знания. |
− | 3 | + | 3. Оценка корректности и полноты графа знаний. |
Версия 01:07, 3 января 2021
Представление знаний (англ. knowledge representation) — направление в исследованиях искусственного интеллекта, посвящённое представлению информации о мире в форме, которую было бы возможно использовать в компьютерных системах для решения сложных задач, таких как диагностирование заболеваний или ведение диалога на естественном языке. Представление знаний включает в себя психологические исследования по решению задач человеком для построения формализмов, которые упростили бы работу со сложными системами. Примерами формализмов представления знаний являются семантические сети, архитектуры систем, правила и онтологии.
Графы знаний
История
Определение: |
Семанти́ческая сеть (англ. semantic network) — информационная модель предметной области, представленная в виде ориентированного графа. Вершины при этом соответствуют объектам предметной области, а рёбра представляют отношения между ними. Семантическая сеть — это один из способов представления знаний. |
Семантические сети были разработаны в 1960 году из-за растущей необходимости в инструменте для представления знаний, который мог бы охватить широкий спектр сущностей: объекты реального мира, события, ситуации и отвлечённые концепты и отношения, — в конце концов будучи применённым в задаче поддержания диалога на естественном языке. Основной целью разработки семантических сетей было решение множества задач, например, представление планов, действий, времени, верований и намерений. При этом способ решения этих задач должен был быть достаточно обобщённым.
В 1980-х гг. Гронингенский университет и университет Твенте начали работу над совместным проектом, названным "Графы знаний", базируясь на устройстве семантических сетей с рёбрами, ограниченными наперёд заданным количеством отношений — для упрощения алгебры на графах. В последовавшие десятилетия граница между понятиями "Графов знаний" и "Семантических сетей" размывалась всё больше.
В 2012 же году Google представили свою версию графа знаний.
Определение
Не существует формального определения графа знаний. Однако есть ряд аксиом, которым граф знаний должен удовлетворять.
1) Значение графа знаний выражается в его структуре.
2) Утверждения внутри графа знаний являются однозначными.
3) Граф знаний использует конечный набор типов отношений.
4) Все указанные сущности внутри графа знаний, включая типы и отношения, должны быть определены с использованием глобальных идентификаторов с однозначными обозначениями.
5) Утверждения в графе знаний должны иметь явно указанные источники.
6) Граф знаний может иметь оценки неопределённостей.
Применение
Вопросно-ответные системы. Самым распространённым применением графов знаний являются вопросно-ответные системы. Графы знаний располагают огромным количеством информации, доступ к которой проще всего получать посредством схемы вопрос-ответ.
Хранение информации исследований. Многие компании используют графы знаний для хранения результатов, полученных на разных стадиях исследований, которые могут быть использованы для построения понятных моделей, просчёта рисков, слежения за различными процессами и т. д.
Рекомендательные системы. Некоторые компании используют графы знаний как фундамент для своих рекомендательных систем. Здесь графы знаний позволяют находить связи между фильмами, телепрограммами, персоналиями и т. д. По выявленным связям можно пытаться предсказать индивидуальные предпочтения пользователя.
Управление цепочками поставок. Компании могут эффективно следить за перечнями различных составляющих, задействованного персонала, времени и др., что позволяет им передавать вещи более выгодно.
Открытые проблемы
1. Выявление лучших практик для построения графов знаний.
2. Динамически изменяемые знания.
3. Оценка корректности и полноты графа знаний.