Биномиальная куча — различия между версиями
| Строка 66: | Строка 66: | ||
x = sibling[x] | x = sibling[x] | ||
return y | return y | ||
| + | </code> | ||
| + | |||
| + | <code> | ||
| + | lis = 0 // длина НВП | ||
| + | a = (n, 0) // заполняем нулями | ||
| + | pred = (n, -1) // -1 - признак отсутствия предпоследнего элемента, что указывает на то, что данный элемент является первым в подпоследовательности | ||
| + | a[1] = 1 | ||
| + | For i = 2 to n | ||
| + | For j = 1 to i - 1 | ||
| + | If (x[i] > x[j]) and (a[j] + 1 > a[i]) // нашли более оптимальную подпоследовательность | ||
| + | a[i] = a[j]+1 | ||
| + | pred[i] = j | ||
| + | lis = max(lis, a[i]) | ||
</code> | </code> | ||
Версия 23:21, 13 марта 2011
| Определение: |
| Биномиальное дерево — дерево, определяемое для каждого следующим образом: - дерево, состоящее из одного узла высоты 0, то есть состоит из одного узла; состоит из двух биномиальных деревьев , связанны вместе таким образом, что корень одного из них является крайним левым дочерним узлом корня второго дерева. |
Свойства биномиальных деревьев. Биномиальное дерево с n вершинами:
- имеет узлов;
- имеет высоту k;
- имеет ровно узлов на высоте ;
- имеет корень степени k; степерь всех остальных вершин меньше степени корня биномиального дерева. Кроме того, если дочерние узлы корня пронумеровать слева направо числами , то i-й дочерний узел корня является корнем биномиального дерева
- максимальная степень произвольного узла в биномиальном дереве с n узлами равна .
| Определение: |
Биномиальная пирамида H — представляет собой множество биномиальных деревьев, которые удовлетворяют следующим свойствам биномиальных пирамид.
|
Содержание
Представление биномиальных куч
Поскольку количество детей у узлов варьируется в широких пределах, ссылка на детей осуществляется через левого ребенка, а остальные дети образуют односвязный список. Каждый узел в биномиальной пирамиде (куче) представляется набором полей:
- key — ключ (вес) элемента;
- parent — указатель на родителя узла;
- child — указатель на левого ребенка узла;
- sibling — указатель на правого брата узла;
- degree — степень узла (количество дочерних узлов данного узла).
Доступ к куче осуществляется ссылкой на самое левое поддерево. Корни деревьев, из которых составлена куча, оказываются организованными с помощью поля sibling в так называемый корневой односвязный список.
Операции над биномиальными пирамидами
Рассмотрим операции, которые можно производить с биномиальной пирамидой. Их верхние асимптотические оценки показаны в таблице.
| Make_Heap | |
| Insert | |
| Minimum | |
| Extract_Min | |
| Union | |
| Decrease_Key | |
| Delete |
Make_Heap
Для создания пустой биномиальной приамиды процедура Make_Binomial_Heap просто выделяет память и возвращает объект H, где head[H] = nil, то есть пирамида не содержит элементов.
Minimum
Процедура Binomial_Heap_Minimum возвращает указатель на узел с минимальным ключом. Приведенный ниже певдокод предполагает, что ключей, равных , нет.
Binomial_Yeap_Minimum(H)
y = NIL
x = head[H]
min =
while x NIL do
if key[x] < min then y = x x = sibling[x]
return y
lis = 0 // длина НВП
a = (n, 0) // заполняем нулями
pred = (n, -1) // -1 - признак отсутствия предпоследнего элемента, что указывает на то, что данный элемент является первым в подпоследовательности
a[1] = 1
For i = 2 to n
For j = 1 to i - 1
If (x[i] > x[j]) and (a[j] + 1 > a[i]) // нашли более оптимальную подпоследовательность
a[i] = a[j]+1
pred[i] = j
lis = max(lis, a[i])