Участник:Terraqottik — различия между версиями
(Добавлено определение и информация о порождающей матрице) |
(→Расстояние кода) |
||
Строка 29: | Строка 29: | ||
где <tex>w</tex> и <tex>s</tex> {{---}} векторы-строки. Порождающая матрица линейного <tex>[n, k, d]_q</tex>-кода имеет вид <tex>k \times n</tex>. Число избыточных бит тогда определяется как <tex>r = n - k</tex>. | где <tex>w</tex> и <tex>s</tex> {{---}} векторы-строки. Порождающая матрица линейного <tex>[n, k, d]_q</tex>-кода имеет вид <tex>k \times n</tex>. Число избыточных бит тогда определяется как <tex>r = n - k</tex>. | ||
− | == Расстояние | + | == Минимальное расстояние и корректирующая способность == |
+ | |||
+ | Линейность гарантирует, что [[Расстояние Хэмминга | расстояние Хэмминга]] <tex>d</tex> между кодовым словом <tex>c_0</tex> и любым другим кодовым словом <tex>c \neq c_0</tex> не зависит от <tex>c_0</tex>. Так как <tex>c - c_0</tex> {{---}} тоже кодовое слово, а <tex>d(c, c_0) = d(c - c_0, 0)</tex>, то | ||
+ | |||
+ | :<tex>\min_{c \in C,\ c \neq c_0}d(c,c_0)=\min_{c \in C,\ c \neq c_0}d(c-c_0, 0)=\min_{c \in C,\ c \neq 0}d(c, 0)=d.</tex> | ||
+ | |||
+ | Иными словами, чтобы найти минимальное расстояние между кодовыми словами линейного кода, необходимо рассмотреть ненулевые кодовые слова. Тогда ненулевое кодовое слово с минимальным весом будет иметь минимальное расстояние до нулевого кодового слова, таким образом показывая минимальное расстояние линейного кода. | ||
== Количество ошибок == | == Количество ошибок == |
Версия 09:11, 18 февраля 2021
Определение: |
Линейный код (англ. Linear code) — код фиксированной длины, исправляющий ошибки, для которого любая линейная комбинация кодовых слов также является кодовым словом. |
Линейные коды обычно делят на блочные коды и свёрточные коды. Также можно рассматривать турбо-коды, как гибрид двух предыдущих.[1]
По сравнению с другими кодами, линейные коды позволяют реализовывать более эффективные алгоритмы кодирования и декодирования информации (см. синдромы ошибок).
Содержание
Формальное определение
Определение: |
Линейный код длины | и ранга является линейным подпространством размерности векторного пространства , где — конечное поле (поле Галуа) из элементов. Такой код с параметром называется -арным кодом (напр. если — то это 5-арный код). Если или , то код представляет собой двоичный код, или тернарный соответственно.
Векторы в называют кодовыми словами. Размер кода — это количество кодовых слов, т.е. .
Весом кодового слова называют число его ненулевых элементов. Расстояние между двумя кодовыми словами — это расстояние Хэмминга. Расстояние линейного кода — это минимальный вес его ненулевых кодовых слов или равным образом минимальное расстояние между всеми парами различных кодовых слов. Линейный код длины , ранга и с расстоянием называют -кодом (англ. [n,k,d] code).
Порождающая матрица
Так как линейный код является линейным подпространством
, целиком код (может быть очень большим) может быть представлен как линейная оболочка набора из кодовых слов (т.е. базис). Этот базис часто объединяют в столбцы матрицы и называют такую матрицу порождающей матрицей кода .В случае, если
, где — это единичная матрица размера , а — это матрица размера говорят, что матрица находится в каноническом виде.Имея матрицу
можно получить из некоторого входного вектора кодовое слово линейного кода- ,
где
и — векторы-строки. Порождающая матрица линейного -кода имеет вид . Число избыточных бит тогда определяется как .Минимальное расстояние и корректирующая способность
Линейность гарантирует, что расстояние Хэмминга между кодовым словом и любым другим кодовым словом не зависит от . Так как — тоже кодовое слово, а , то
Иными словами, чтобы найти минимальное расстояние между кодовыми словами линейного кода, необходимо рассмотреть ненулевые кодовые слова. Тогда ненулевое кодовое слово с минимальным весом будет иметь минимальное расстояние до нулевого кодового слова, таким образом показывая минимальное расстояние линейного кода.
Количество ошибок
Прочее
Примечания
Источники информации
- wikipedia.org — Линейный код
- wikipedia.org — Linear code
- Мак-Вильямс Ф. Дж., Слоэн Н. Дж. А. Теория кодов, исправляющих ошибки: Пер. с англ. — М: Связь, 1979. — 744 с., стр. 12-33
- Ф.И. Соловьева — Введение в теорию кодирования
- В. А. Липницкий, Н. В. Чесалин — Линейные коды и кодовые последовательности: учеб.-метод. пособие для студентов мех.-мат. фак. БГУ. Минск: БГУ, 2008. — 41 с.