Лемма Шварца-Зиппеля — различия между версиями
(→Индукционный переход: исправил бред в индукционном предположении) |
|||
Строка 9: | Строка 9: | ||
=== Индукционный переход === | === Индукционный переход === | ||
− | Пусть утверждение верно для всех полиномов | + | Пусть утверждение верно для всех полиномов от не более чем <tex> n - 1 </tex> переменных. Разложим <tex> q </tex> по степеням <tex> x_n </tex>: |
<tex> q(x_1, ..., x_n) = \sum_{i=0}^d q_i(x_1, ..., x_{n-1}) x_n^i </tex> | <tex> q(x_1, ..., x_n) = \sum_{i=0}^d q_i(x_1, ..., x_{n-1}) x_n^i </tex> |
Версия 12:07, 1 июня 2021
Содержание
Формулировка
Пусть задан полином
степени над полем , а также произвольное множество . Пусть также — набор независимых случайных величин, равномерно распределенных в . Тогда .Доказательство
Проведем доказательство леммы индукцией по
.База индукции
В случае, когда
, утвержение следует из того, что произвольный полином степени над полем имеет не более чем корней.Индукционный переход
Пусть утверждение верно для всех полиномов от не более чем
переменных. Разложим по степеням :
Так как
, хотя бы один полином . Пусть . По формуле полной вероятности имеем: .Заметим, что
— полином от переменных, а потому к нему применимо предположение индукции. Кроме того, . Таким образом, .Для получения оценки второго слагаемого зафиксируем некоторый набор
, для которого . Тогда для как для полинома одной переменной степени будет выполнено: ., что и требовалось доказать.
Применение
С помощью этой леммы можно, например, показать принадлежность задачи проверки эквивалентности двух полиномов классу coRP.
Формулировка задачи
Пусть даны два полинома —
и . Необходимо проверить, верно ли, что .Утверждение
Сформулированная выше задача принадлежит классу
.Доказательство
Для доказательства построим такой алгоритм m, что:
Для этого рассмотрим полином
. Очевидно, что . Рассмотрим над некоторым полем . Очевидно, что если , то это будет выполнено и в (обратное, вообще говоря, неверно). Возьмем случайный набор . По доказанной выше лемме . Тогда алгоритм, по данным и выдающий , удовлетворяет поставленным условиям, лишь только , что тем более верно, если .