Участник:Nkorzh — различия между версиями
Nkorzh (обсуждение | вклад) (Исправил пояснение ко второму примеру) |
Nkorzh (обсуждение | вклад) м (sources added) |
||
Строка 52: | Строка 52: | ||
Данная оценка учитывает все обратные корни с их коэффициентами, поэтому она является представлением коэффициента производящей функции в форме [https://neerc.ifmo.ru/wiki/index.php?title=%D0%9F%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5_%D0%90%D0%B4%D0%B0%D0%BC%D0%B0%D1%80%D0%B0_%D1%80%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D1%85_%D0%BF%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4%D1%8F%D1%89%D0%B8%D1%85_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B9 квазимногочлена], поэтому вместо знака <tex>\sim</tex> можно поставить знак равенства. | Данная оценка учитывает все обратные корни с их коэффициентами, поэтому она является представлением коэффициента производящей функции в форме [https://neerc.ifmo.ru/wiki/index.php?title=%D0%9F%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5_%D0%90%D0%B4%D0%B0%D0%BC%D0%B0%D1%80%D0%B0_%D1%80%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D1%85_%D0%BF%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4%D1%8F%D1%89%D0%B8%D1%85_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B9 квазимногочлена], поэтому вместо знака <tex>\sim</tex> можно поставить знак равенства. | ||
+ | |||
+ | == См. также == | ||
+ | * [[Производящая функция]] | ||
+ | * [[Произведение Адамара рациональных производящих функций]] | ||
+ | |||
+ | == Источники информации == | ||
+ | * Graham, Knuth, and Patashnik: Concrete Mathematics | ||
+ | * [https://en.wikipedia.org/wiki/Generating_function#Asymptotic_growth_of_a_sequence Wikipedia {{---}} Asymptotic growth of a sequence] |
Версия 16:47, 9 июня 2021
Содержание
Асимптотическое поведение последовательности, заданной рекуррентным соотношением
Необходимые определения
Определение: |
Последовательность | называется линейной рекуррентной последовательностью (англ. constant-recursive sequence), если её члены заданы, а выполняется
Определение: |
Функции | и имеют одинаковую асимптотику, или одинаковый рост, при , если существует предел , и он равен .
Здесь будет рассмотрен метод поиска функции , такой что имеет одинаковую асимптотику с .
Из теоремы о связи между рациональностью производящей функции и линейной рекуррентностью задаваемой ей последовательности известно, что последовательность, заданная рекуррентным соотношением, представима в виде дробно-рациональной производящей функции в следующем виде: , где , .
Алгоритм
Пусть последовательность задана дробно-рациональной функцией
, тогда — многочлен конечной степени, и мы можем найти его обратные корни с кратностью соответственно .Существует единственный максимальный обратный корень:
Тогда
, в этом случаеСуществует несколько максимальных по модулю корней
Возьмем те из них, кратность которых максимальна, тогда имеем
, у каждого из которых кратность . Тогда , где — модуль каждого из корней.Значит
, где — коэффициенты, полученные при разбиении дробно-рациональной функции на простые дроби.Примеры задач
Задача: |
Оцените асимптотическое поведение коэффициента | производящей функции при
Найдем корни знаменателя производящей функции:
, тогда обратные корни: .Выберем максимальный по модулю
, тогда .Задача: |
Оцените асимптотическое поведение коэффициента | производящей функции при
Найдем корни знаменателя производящей функции:
: , тогда обратные корни: . Все три обратных корня имеют одинаковый модуль и кратность .Для определения доминирующего коэффициента разложим производящую функцию на простые дроби, например, с помощью метода неопределенных коэффициентов, так мы найдем
.
Данная оценка учитывает все обратные корни с их коэффициентами, поэтому она является представлением коэффициента производящей функции в форме квазимногочлена, поэтому вместо знака можно поставить знак равенства.
См. также
Источники информации
- Graham, Knuth, and Patashnik: Concrete Mathematics
- Wikipedia — Asymptotic growth of a sequence