Инициализация параметров глубокой сети — различия между версиями
(init) |
(→Метод инициализации XavierUnderstanding the difficulty of training deep feedforward neural networks.) (Метки: правка с мобильного устройства, правка из мобильной версии) |
||
Строка 23: | Строка 23: | ||
Поэтому для начальной инициализации параметров стоит использовать такое распределение, что $\mathrm{Var}[w_i]=\frac{1}{n_{in}}$, которое позволит сохранить дисперсию входных данных. | Поэтому для начальной инициализации параметров стоит использовать такое распределение, что $\mathrm{Var}[w_i]=\frac{1}{n_{in}}$, которое позволит сохранить дисперсию входных данных. | ||
− | ===Метод инициализации Xavier<ref>[http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf Understanding the difficulty of training deep feedforward neural networks]</ref> | + | ===Метод инициализации Xavier<ref>[http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf Understanding the difficulty of training deep feedforward neural networks]</ref>=== |
Предыдущий подход хорошо работает, когда размерность наших данных не изменяется после преобразований $(n_{in} = n_{out})$, но так бывает не всегда. В качестве компромисса Xavier Glorot и Yoshua Bengio предлагают инициализировать параметры из распределения с дисперсией $\mathrm{Var}[w_i]=\frac{2}{n_{in}+n_{out}}$. | Предыдущий подход хорошо работает, когда размерность наших данных не изменяется после преобразований $(n_{in} = n_{out})$, но так бывает не всегда. В качестве компромисса Xavier Glorot и Yoshua Bengio предлагают инициализировать параметры из распределения с дисперсией $\mathrm{Var}[w_i]=\frac{2}{n_{in}+n_{out}}$. |
Версия 19:38, 9 мая 2022
Инициализация — это процесс установки настраиваемых параметров для нашей глубокой сети. Выбор правильного метода инициализации важен для качества обучения нашей модели. Также это позволяет сократить время сходимости и минимизировать функцию потерь. Поэтому важно уметь выбрать правильный метод инициализации.
Содержание
Наивная инициализация
Если задать все параметры нулевыми или константными значениями, это приведёт к тому, что наша сеть либо совсем не обучится, либо абсолютно все нейроны будут вести себя одинаково — совсем не то, что мы хотим получить. Глубокая сеть должна обучаться разным признакам.
Инициализация случайными числами
Рассмотрим линейное преобразование:
Его дисперсия (считаем настраиваемые параметры и входные данные независимыми):
Если отнормировать входные данные и подобрать параметры, чтобы среднее было нулевым, получится:
Поскольку $x_i$ мы отнормировали, а $w_i$ из одного распределения, то все дисперсии одинаковые:
Отсюда видно, что дисперсия результата линейно зависит от дисперсии входных данных с коэффициентом $n_{in} \mathrm{Var}[w_i]$.
Если коэффициент будет $>1$ это приведет к увеличению дисперсии с каждым новым преобразованием, что может привести к ошибкам или насыщению функции активации, что негативно скажется на обучении сети.
Если коэффициент будет $<1$ это приведет к снижению дисперсии с каждым новым преобразованием с около нулевым промежуточным представлением, что тоже негативно скажется на обучении сети.
Поэтому для начальной инициализации параметров стоит использовать такое распределение, что $\mathrm{Var}[w_i]=\frac{1}{n_{in}}$, которое позволит сохранить дисперсию входных данных.
Метод инициализации Xavier[1]
Предыдущий подход хорошо работает, когда размерность наших данных не изменяется после преобразований $(n_{in} = n_{out})$, но так бывает не всегда. В качестве компромисса Xavier Glorot и Yoshua Bengio предлагают инициализировать параметры из распределения с дисперсией $\mathrm{Var}[w_i]=\frac{2}{n_{in}+n_{out}}$.
Для равномерного распределения $\mathcal U$ это будет:
Для нормального распределения $\mathcal N$ это будет:
Этот способ инициализации хорошо подойдет для симметричных относительно нуля функций активации (гиперболический тангенс, сигмоид), для ReLU[2] данный способ не подходит.
Пример инициализации Xavier на языке Python
# example of the normalized xavier weight initialization from math import sqrt from numpy import mean from numpy.random import rand # number of nodes in the previous layer n = 10 # number of nodes in the next layer m = 20 # calculate the range for the weights lower, upper = -(sqrt(6.0) / sqrt(n + m)), (sqrt(6.0) / sqrt(n + m)) # generate random numbers numbers = rand(1000) # scale to the desired range scaled = lower + numbers * (upper - lower)
Метод инициализации He[3]
Поскольку ReLU несимметричная функция $f(x) = max(0, x)$, мы уже не можем утверждать, что среднее значение входных данных в каждом преобразовании будет нулевым:
Поэтому мы будем пытаться контролировать дисперсию не между слоями, а между входами ReLU. Пусть представление на входе было получено после применения данной функции активации к предыдущему представлению $y_{prev}$:
Тогда с учётом поведения ReLU и того, что $\mathrm{E}(y_{prev})=0$, можно сказать, что:
Получается, что при использовании ReLU, нужно инициализировать параметры из распределения с дисперсией $\mathrm{Var}[w_i]=\frac{2}{n_{in}}$.
Для нормального распределения $\mathcal N$ это будет:
Пример инициализации He на языке Python
# example of the he weight initialization from math import sqrt from numpy.random import randn # number of nodes in the previous layer n = 10 # calculate the range for the weights std = sqrt(2.0 / n) # generate random numbers numbers = randn(1000) # scale to the desired range scaled = numbers * std