Неотрицательные суммируемые функции — различия между версиями
Sementry (обсуждение | вклад) м (так понятнее) |
|||
| Строка 1: | Строка 1: | ||
| + | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
| + | |+ | ||
| + | |-align="center" | ||
| + | |'''НЕТ ВОЙНЕ''' | ||
| + | |-style="font-size: 16px;" | ||
| + | | | ||
| + | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
| + | |||
| + | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
| + | |||
| + | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
| + | |||
| + | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
| + | |||
| + | ''Антивоенный комитет России'' | ||
| + | |-style="font-size: 16px;" | ||
| + | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
| + | |-style="font-size: 16px;" | ||
| + | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
| + | |} | ||
| + | |||
[[Предельный переход под знаком интеграла Лебега|<<]] [[Суммируемые функции произвольного знака|>>]] | [[Предельный переход под знаком интеграла Лебега|<<]] [[Суммируемые функции произвольного знака|>>]] | ||
Версия 06:31, 1 сентября 2022
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Будем рассматривать пространство с -конечной, полной мерой.
Пусть - произвольное измеримое множество, - измеримая функция.
Рассмотрим набор измеримых множеств , такой, что , , - ограничена на . В такой ситуации существует интеграл Лебега .
| Определение: |
| Интеграл |
| Определение: |
| суммируема на , если |
Класс непуст, так как всегда .
Более того, по сигма-конечности меры, можно рассмотреть объединение , :
Пусть , , но
, поэтому (на множестве — ограничена), следовательно, .
Все будем условно называть "хорошими множествами".
| Теорема: |
Пусть — измеримо, разбито на дизъюнктные измеримые части: . — измеримо, . Тогда . |
| Доказательство: |
|
Заметим, что мы не предполагаем суммируемость . если — хорошее относительно , то — также хорошее относительно . По свойствам граней . Если хотя бы на одном из не суммируема, то , тогда неравенство тривиально. Cледовательно, , то есть, — суммируемма на всех . Если — хорошее относительно , то - дизъюнктны. - также дизъюнктное объединение. Так как ограничена на , то ограничена и на всех . Мера конечна, отсюда, по -аддитивности интеграла Лебега, . для любого , следовательно, . Переходим к точной верхней грани: . Докажем теперь неравенство в обратную сторону: — суммируема на всех , : . Просуммируем по : . Устремим , что можно сделать, так как это числа: . Устремив , приходим к противоположному неравенству, таким образом, равенство доказано. |
-аддитивность позволяет переносить на любые стандартные свойства интеграла Лебега, например, линейность. Действительно, для :
Чтобы свести ситуацию к ограниченным функциям, мы разбиваем на измеримые, дизъюнктные множества. . Аналогично, .
После этого, . За счет -конечности меры, можно считать, что .
За счет -аддитивности интеграла от неотрицательной функции:
. Получили линейность.