Неотрицательные суммируемые функции — различия между версиями
Sementry (обсуждение | вклад) м (так понятнее) |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
[[Предельный переход под знаком интеграла Лебега|<<]] [[Суммируемые функции произвольного знака|>>]] | [[Предельный переход под знаком интеграла Лебега|<<]] [[Суммируемые функции произвольного знака|>>]] | ||
Версия 06:31, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Будем рассматривать пространство с
-конечной, полной мерой.Пусть
- произвольное измеримое множество, - измеримая функция.Рассмотрим набор измеримых множеств
, такой, что , , - ограничена на . В такой ситуации существует интеграл Лебега .
Определение: |
Интеграл |
Определение: |
суммируема на , если |
Класс непуст, так как всегда .
Более того, по сигма-конечности меры, можно рассмотреть объединение
, :Пусть
, , но
, поэтому (на множестве — ограничена), следовательно, .
Все
будем условно называть "хорошими множествами".
Теорема: |
Пусть — измеримо, разбито на дизъюнктные измеримые части: . — измеримо, . Тогда . |
Доказательство: |
Заметим, что мы не предполагаем суммируемость .если — хорошее относительно , то — также хорошее относительно . По свойствам граней .Если хотя бы на одном из не суммируема, то , тогда неравенство тривиально.Cледовательно, , то есть, — суммируемма на всех .Если — хорошее относительно , то - дизъюнктны.- также дизъюнктное объединение. Так как ограничена на , то ограничена и на всех . Мера конечна, отсюда, по -аддитивности интеграла Лебега, .для любого , следовательно, . Переходим к точной верхней грани: .Докажем теперь неравенство в обратную сторону: — суммируема на всех , : . Просуммируем по :. Устремим , что можно сделать, так как это числа:Устремив . , приходим к противоположному неравенству, таким образом, равенство доказано. |
-аддитивность позволяет переносить на любые стандартные свойства интеграла Лебега, например, линейность. Действительно, для :
Чтобы свести ситуацию к ограниченным функциям, мы разбиваем
на измеримые, дизъюнктные множества. . Аналогично, .После этого,
. За счет -конечности меры, можно считать, что .За счет
-аддитивности интеграла от неотрицательной функции:. Получили линейность.