Нормализация набора данных — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 +
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 +
|+
 +
|-align="center"
 +
|'''НЕТ ВОЙНЕ'''
 +
|-style="font-size: 16px;"
 +
|
 +
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 +
 +
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 +
 +
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 +
 +
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 +
 +
''Антивоенный комитет России''
 +
|-style="font-size: 16px;"
 +
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 +
|-style="font-size: 16px;"
 +
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 +
|}
 +
 
Набор данных содержит в себе единицы измерения, которые отбрасываются, чтобы набор данных был просто числами. Но чтобы далее работать, нам нужно, чтобы все объекты были приведены к единому формату. С этим и помогает '''нормализация'''.
 
Набор данных содержит в себе единицы измерения, которые отбрасываются, чтобы набор данных был просто числами. Но чтобы далее работать, нам нужно, чтобы все объекты были приведены к единому формату. С этим и помогает '''нормализация'''.
  

Версия 07:30, 1 сентября 2022

НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.

Набор данных содержит в себе единицы измерения, которые отбрасываются, чтобы набор данных был просто числами. Но чтобы далее работать, нам нужно, чтобы все объекты были приведены к единому формату. С этим и помогает нормализация.

Нормализация применяется независимо к столбцу X.

Важно в sklearn.preprocessing есть метод normalize, но это не то, что нам нужно, он рассматривает нормализацию с геометрической точки зрения (представляет объект в виде вектора), а не по столбцам.


Минмакс, [0;1] масштабирование [math] x_{new} = \dfrac{x_{old} - \min[X]}{\max[X] - \min[X]}[/math]

После нормализации: [math]\min[X_{new}] = 0[/math] и [math]\max[X_{new}] = 1[/math]


Стандартизация, Z-масштабирование [math] x_{new} = \dfrac{x_{old} - \mathbb{E}[X]}{\mathbb{D}[X]}[/math]

После нормализации: [math]\mathbb{E}[X_{new}] = 0[/math] и [math]\mathbb{D}[X_{new}] = 1[/math]

Декорреляция

Процесс, который используется для уменьшения корреляции.

рис.1 Декорреляция

1. Есть матрица X.

2. Матрицу центрировали ([math]\mathbb{E}[X_j] = 0[/math]).

3. Ковариация вычисляется по следующей формуле:

[math]\Sigma(X) = \dfrac{1}{N}X^TX[/math]

4. Если же матрица нормализована так, что [math]\mathbb{D}[X_j] = 1[/math], то из произведения мы получим не ковариационную, а корреляционную матрицу

5. Декорреляция вычисляется по формуле:

[math]\hat{X} = X \times \sum^{-1/2}(X)[/math]

где [math]\Sigma^{1/2}[/math] находится из разложения Холецкого

Утверждение:
После декорреляции: [math]\sum(\hat{X}) = I[/math]
[math]\triangleright[/math]

[math]\Sigma = \dfrac{X^TX}{n}[/math]

[math]\hat{X} = X \times \Sigma^{-1/2}[/math]

[math]\dfrac{\hat{X}^T\hat{X}}{n} = \dfrac{(X \times \Sigma^{-1/2})^T \times (X \times \Sigma^{-1/2})}{n} = \dfrac{\Sigma^{-T/2} \times X^T \times X \times \Sigma^{-1/2}}{n} = (\Sigma^{-T/2} \times \Sigma^{T/2})\times(\Sigma^{1/2}\times\Sigma^{-1/2}) = I \times I = I[/math].
[math]\triangleleft[/math]