О почленном интегрировании ряда Фурье — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 +
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 +
|+
 +
|-align="center"
 +
|'''НЕТ ВОЙНЕ'''
 +
|-style="font-size: 16px;"
 +
|
 +
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 +
 +
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 +
 +
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 +
 +
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 +
 +
''Антивоенный комитет России''
 +
|-style="font-size: 16px;"
 +
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 +
|-style="font-size: 16px;"
 +
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 +
|}
 +
 
[[Теорема Жордана|<<]][[L_2-теория рядов Фурье|>>]]
 
[[Теорема Жордана|<<]][[L_2-теория рядов Фурье|>>]]
 
{{В разработке}}
 
{{В разработке}}

Версия 07:57, 1 сентября 2022

НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.

<<>>

Эта статья находится в разработке!

Здесь будем рассматривать [math]f \in L_1[/math], [math]\sigma(f, x) = \frac{a_0}2 + \sum\limits_{n=1}^\infty (a_n \cos nx + b_n \sin nx)[/math]

Пусть [math]F(x) = \int\limits_0^x \left(f(t) - \frac{a_0}2\right) dt[/math].

Докажем, что [math] F(x) \in \bigvee [/math]:

Утверждение:
[math]F \in \bigvee[/math]
[math]\triangleright[/math]

Нужно доказать [math]2\pi[/math]-периодичность [math]F[/math] и ограниченность её вариации.

Утверждение:
Ограниченность вариации
[math]\triangleright[/math]

[math]|F(x_{k+1}) - F(x_k)| \stackrel{x_k \lt x_{k+1}}{\le} \int\limits_{x_k}^{x_{k+1}} \left|f(t) - \frac{a_0}2\right| dt[/math]

Создадим разбиение нашего промежутка: [math] -\pi = x_0 \lt \dots \lt x_p = \pi [/math]. Тогда вариация

[math]\bigvee\limits_{-\pi}^\pi (F, \tau) [/math] [math]\le \sum\limits_{k=0}^{p-1} \int\limits_{x_k}^{x_{k+1}} \left|f(t) - \frac{a}2 \right| dt = [/math] [math]\int\limits_Q \left|f(t) - \frac{a_0}2 \right| dt \lt +\infty[/math].

Так как это выполняется для любого разбиения, [math]\bigvee\limits_{-\pi}^\pi(F) \le \int\limits_Q \left|f(t) - \frac{a_0}2 \right| \lt +\infty[/math]. Итак, [math]F[/math] имеет ограниченную вариацию на [math]Q[/math].
[math]\triangleleft[/math]
Утверждение:
[math]F[/math][math]2\pi[/math]-периодичная функция.
[math]\triangleright[/math]

[math]F(x + 2\pi) = \int\limits_0^{x+2\pi} = \int\limits_0^x + \int\limits_x^{x+2\pi}[/math]

Под знаком интеграла [math]2\pi[/math]-периодическая функция, значит, [math]\int\limits_x^{x+2\pi} = \int\limits_{-\pi}^\pi \left(f(t) - \frac{a_0}2\right) dt [/math] [math]= \int\limits_{-\pi}^\pi f - \pi a_0[/math] = [по определению [math]a_0[/math]] [math]\pi a_0 - \pi a_0 = 0[/math]

[math]\int\limits_0^x = F(x) \Rightarrow F(x + 2\pi) = F(x)[/math]
[math]\triangleleft[/math]
[math]\triangleleft[/math]

Итак, [math]F \in \bigvee[/math]. Значит,по теореме Жордана, в каждой точке ряд Фурье этой функции сходится, [math]\sigma(F, x) = \frac{F(x - 0) +F(x+0)}2[/math]

В силу абсолютной непрерывности интеграла Лебега, легко понять, что [math]F[/math] — непрерывна и [math]F \in CV[/math], а также, [math]\sigma(F, x) = F(x)[/math]

Теперь вычислим коэффициенты Фурье [math]F[/math]. [math]a_0(F)[/math] считать пока не будем. Также предположим (докажем это позже), что [math]F[/math] для почти всех [math]x[/math] дифференцируема по верхнему пределу интегрирования, и значение производной равно [math]f(x)[/math].

[math]a_n(F) = \frac1\pi\int\limits_{-\pi}^\pi F(x) \cos nx dx = \frac1{\pi n} \int\limits_{-\pi}^\pi F(x) d(\sin nx) = [/math] [math] \frac1{\pi n} (F(x) \sin x) \bigl |^\pi_{-\pi} - \int\limits_{-\pi}^\pi \sin nx dF(x) ) = [/math] [math] \frac1{\pi n} (0 - \int\limits_{-\pi}^\pi \sin x dF(x)) = -\frac1{\pi n} \int\limits_{-\pi}^\pi \sin nx dF(x) =[/math] [math] -\frac1{\pi n} \int\limits_{-\pi}^\pi f(x)\sin nx dx = -\frac{b_n(f) \pi}{\pi n} = -\frac{b_n(f)}{n} [/math]

Значит, [math]a_n(F) = \frac{-b_n(f)}{n}[/math]. Аналогично, [math]b_n(F) = \frac{a_n(f)}{n}[/math]. В силу сказанного выше,

[math]F(x) = \frac{a_0(F)}2 + \sum\limits_{n=1}^\infty (\frac{-b_n(f)}n \cos nx + \frac{a_n(f)}n \sin nx)[/math]

Подставим [math]0[/math] и убедимся, что [math]\frac{a_0(F)}2 = \sum\limits_{n=1}^\infty \frac{b_n(f)}n[/math]

Получился неожиданный факт. Ряд Фурье может расходиться почти всюду, но [math]\sum\limits_{n=1}^\infty \frac{b_n(f)}n[/math] всегда сходится.

Это позволяет приводить примеры сходящихся тригонометрических рядов, которые не являются рядами Фурье.

Рассмотрим ряд [math]\sum\limits_{n=2}^\infty \frac{\sin nx}{\ln n}[/math]. Очевидно, [math]\frac1{\ln n} \to 0[/math].

При [math]x = 0[/math] ряд сходится. При [math]x \ne 0[/math], [math]\left|\sum\limits_{n=2}^\infty \sin nx \right| \le \frac{M(x)}{\sin x/2}[/math], то есть, ограничен.

По признаку Абеля-Дирихле, ряд сходится. Мы имеем ряд, сходящийся в каждой точке, но не может сходиться равномерно на Q, так как, иначе, он был бы рядом Фурье. Пусть он сходится равномерно на [math]Q[/math]. Тогда он сходится к непрерывной функции. Функция, непрерывная и [math]2\pi[/math]-периодическая, следовательно, лежит в [math]L_1[/math]. Значит, это — ряд Фурье этой функции (по определению). Но это не ряд Фурье. Противоречие.

Предположим, что это ряд Фурье. Тогда [math]b_n(f) = \frac1{\ln n}[/math] и ряд [math]\sum \frac1{n\ln n}[/math] должен был бы сходиться. Но по интегральному признаку Коши: [math]\sum \frac1{n\ln n} \sim \int \frac{dx}{x\ln x} = \ln \ln x \big|^\infty = +\infty[/math].

Значит, это не ряд Фурье.

Вернёмся ещё раз к формуле [math]F(x) = \frac{a_0(F)}2 + \sum\limits_{n=1}^\infty \left(\frac{-b_n(f)}n \cos nx + \frac{a_n(f)}n \sin nx\right)[/math]. Рассмотрим [math]A_n(f, x) = a_n(f) \cos nx + b_n(f) \sin nx[/math], при [math](n \ge 1)[/math], и [math]A_0(f, x) = \frac{a_0}{2}[/math].

[math]\int\limits_0^x A_n(f, t) dt = \frac{a_n(f)}n \sin nt \big|^x_0 - \frac{b_n(f)}n \cos nt \big|^x_0[/math] [math]=\frac{a_n(f)}n \sin nx - \frac{b_n(f)}n \cos nx + \frac{b_n(f)}n[/math]

Значит, если составить ряд из интегралов [math]\sum\limits_{n=1}^\infty \int\limits_0^x A_n(f, x) dx[/math] [math]= \sum\limits_{n=1}^\infty \frac{b_n(f)}n + \sum\limits_{n=1}^\infty\left(-\frac{b_n(f)}n \cos nx + \frac{a_n(f)}n\sin nx \right) = [/math]

[math]= \int\limits_0^x \left(f(t) - \frac{a_0}2 \right) dt = \int\limits_0^x f(t) dt - \int\limits_0^x A_0(f, t) dt[/math].

Получаем, [math]\int\limits_0^x f(t) dt = \sum\limits_{n=0}^\infty \int\limits_0^x A_n(f, t) dt[/math].

Ряд Фурье всегда можно интегрировать, несмотря на то, что сам ряд может расходиться в каждой точке. Но ряд из интегралов обязательно сойдётся.

<<>>