Разложение на множители (факторизация) — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Перебор делителей)
Строка 1: Строка 1:
 +
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 +
|+
 +
|-align="center"
 +
|'''НЕТ ВОЙНЕ'''
 +
|-style="font-size: 16px;"
 +
|
 +
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 +
 +
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 +
 +
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 +
 +
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 +
 +
''Антивоенный комитет России''
 +
|-style="font-size: 16px;"
 +
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 +
|-style="font-size: 16px;"
 +
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 +
|}
 +
 
{{Определение | definition=
 
{{Определение | definition=
 
'''Факторизация''' (англ. ''factorization'') — представление объекта в виде произведения других объектов.
 
'''Факторизация''' (англ. ''factorization'') — представление объекта в виде произведения других объектов.

Версия 08:41, 1 сентября 2022

НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.


Определение:
Факторизация (англ. factorization) — представление объекта в виде произведения других объектов.


Определение:
Разложение на множители, или Факторизация целых чисел (англ. integer factorization) — представление числа в виде произведения его множителей.

Перебор делителей

Определение:
Перебор делителей (англ. Trial division) — алгоритм для факторизации или тестирования простоты числа путем полного перебора всех возможных потенциальных делителей.

Наивная реализация O(n)

Основная теорема арифметики, вкупе с утверждением, что [math]y[/math] не делит [math]x[/math] нацело: [math]\forall x, y \in \mathbb{N}~~x\lt y \Longrightarrow[/math] [math]\left( \dfrac{x}{y} \lt 1 \right)[/math], позволяют нам ограничить пространство поиска делителей числа [math]number[/math] интервалом [math][2;number][/math].

Основная идея

Заметим, что если [math]number[/math] = [math]\prod p_i = p_1 \cdot p_2 \cdot \ldots \cdot p_{j-1} \cdot p_j \cdot p_{j+1} \cdot \ldots \cdot p_n[/math], то [math]\left(\dfrac{number}{p_j}\right) = \prod\limits_{i \ne j} p_i = p_1 \cdot p_2 \cdot \ldots \cdot p_{j-1} \cdot p_{j+1} \cdot \ldots \cdot p_n[/math]. Таким образом, мы можем делить [math]number[/math] на его делители (множители) последовательно и в любом порядке. Тогда будем хранить [math]curNum \colon curNum = \dfrac{number}{\prod result_i}[/math] — произведение оставшихся множителей.

Псевдокод нахождения простых множителей

Так как простых множителей не может быть больше, чем [math]n[/math], а в худшем случае (когда число простое, и на каждое итерации [math]probe[/math] увеличивается на [math]1[/math]) он работает за [math]O(n)[/math], то, следовательно, алгоритм работает за [math]O(n)[/math].

  function getMultipliers(number: int): vector<int>
      // сюда складываем множители
      result = vector<int>
      // число, у которого осталось найти множители
      curNum = number
       // число, на которое пытаемся делить
      probe = 2
      while curNum [math]\ne[/math] 1
          if curNum mod probe [math]\ne\, [/math]0
              // проверены все множители из [2; probe]
              probe++
          else
              // делим пока делится
              curNum /= probe
              result += [probe]
       return result

Псевдокод нахождения делителей

   function getDividers(number: int): vector<int>
       // массив полученных делителей
       result = vector<int> 
       // перебираем все потенциальные делители
       for probe = 2 to number
           if number mod probe = 0
               // probe делит number нацело
               result += [probe]
       return result

Улучшенная реализация [math]O(\sqrt{n})[/math]

Основная идея

Из определения: [math]\sqrt{n} \cdot \sqrt{n} = n[/math]. Логично, что:

[math]\bigg\{[/math] [math]x \cdot y = number[/math] [math]\Longrightarrow x \gt \sqrt{number}[/math]
[math]y \lt \sqrt{number}[/math]

Таким образом, любой делитель [math]d_0 \gt \sqrt{number}[/math] однозначно связан с некоторым [math]d_1 \lt \sqrt{number}[/math]. Если мы найдем все делители до [math]\sqrt{number}[/math], задача может считаться решенной.

Псевдокод

   function getDividers(number: int): vector<int>
        result = vector<int>
        for probe = 2 to [math]\sqrt{number}[/math] //обновляем верхнюю границу перебора
           if number mod probe = 0
               result += [probe]
               result += [number / probe] // записываем сопряженный делитель
       return result

Проверка числа на простоту

Алгоритм можно переделать для нахождения простых чисел. Число будет простым, если у него не окажется множителей (и делителей) кроме [math]1[/math] (алгоритмы не проверяют делимость на [math]1[/math]) и самого числа (улучшенная реализация опускает этот делитель).

Предподсчет

Основная статья: Решето Эратосфена

Основная идея

Решето Эратосфена (англ. Sieve of Eratosthenes) позволяет не только находить простые числа, но и находить простые множители числа. Для этого необходимо хранить (помимо самого "решета") массив простых чисел, на которое каждое число делится (достаточно одного простого делителя).

Псевдокод

   // возвращает только дополнительный массив
   function sieveOfEratosthenes(n: int): int[n + 1]
       result = [n + 1]
       result[n] = n
       // выбираем следующий простой делитель
       for i  = 2 to [math]\sqrt{n}[/math]
           if result[i] = 0
               // записываем делитель в элементы массива,
               // соответствующие числа которых делятся нацело
               shuttle = [math]i^2[/math]
               while shuttle [math]\leqslant[/math] n
                   result[shuttle] = i
                   shuttle += i
       return result
   function getMultipliers(number: int): vector<int>
       result = vector<int>
       // получаем дополненное решето Эратосфена
       sieve = sieveOfEratosthenes(number)
       // следующее временное значение получаем
       // делением предыдущего на простой делитель из решета
       curNum = number
       while curNum [math]\ne[/math] 1
           result += sieve[curNum]
           curNum /= sieve[curNum]
       return result

См. также

Источники информации