Zzz — различия между версиями
(Новая страница: «# Сколько байт в бите? Можно ли ответить на этот вопрос с точки зрения теории информации?…») |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
# Сколько байт в бите? Можно ли ответить на этот вопрос с точки зрения теории информации? Какое определение нужно дать для байта в этом случае? | # Сколько байт в бите? Можно ли ответить на этот вопрос с точки зрения теории информации? Какое определение нужно дать для байта в этом случае? | ||
# Докажите, что для монеты энтропия максимальна в случае честной монеты | # Докажите, что для монеты энтропия максимальна в случае честной монеты |
Версия 08:41, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
- Сколько байт в бите? Можно ли ответить на этот вопрос с точки зрения теории информации? Какое определение нужно дать для байта в этом случае?
- Докажите, что для монеты энтропия максимальна в случае честной монеты
- Докажите, что для $n$ исходов энтропия максимальна, если они все равновероятны
- Есть нечестная монета с неизвестной вероятностью $p \in (0, 1)$. Проэмулируйте с помощью этой нечестной монеты честную
- Найдите энтропию для геометрического распределения с $p = 1/2$ (счетное число исходов, $i$-й исход происходит с вероятностью $1/2^i$).
- Найдите энтропию для геометрического распределения с произвольным $p$ (счетное число исходов, $i$-й исход происходит с вероятностью $(1-p)p^i$).
- Пусть заданы полные системы событий $A = \{a_1, ..., a_n\}$ и $B = \{b_1, ..., b_m\}$. Определим условную энтропию $H(A | B)$ как $-\sum\limits_{i = 1}^m P(b_i) \sum\limits_{j = 1}^n P(a_j | b_i) \log P(a_j | b_i))$. Докажите, что $H(A | B) + H(B) = H(B | A) + H(A)$
- Что можно сказать про $H(A | B)$ если $a_i$ и $b_j$ независимы для любых $i$ и $j$?
- Что можно сказать про $H(A | A)$?
- Энтропия кода Хемминга. Рассмотрим четырехбитный код Хемминга. По четырем информационным битам $X = (x_3, x_5, x_6, x_7)$ формируется три контрольных бита $y_1, y_2$ и $y_4$. Рассмотрим семерку битов $Y = (y_1, y_2, x_3, y_4, x_5, x_6, x_7)$. Пусть информационные биты выбираются случайно равновероятно. Чему равна энтропия $H(Y)$?
- Продолжение предыдущей задачи. Отправленное сообщение либо доставляется корректно, либо в нем изменяется ровно один бит. Пусть все восемь перечисленных вариантов равновероятны. Доставляется сообщение $Z$. Чему равна энтропия $H(Z | Y)$?
- Продолжение предыдущей задачи. Чему равна энтропия $H(Z)$?
- Зафиксируем любой язык программирования. Колмогоровской сложностью слова $x$ называется величина $K(x)$ - минимальная длина программы на зафиксированном языке программирования, которая на пустом входе выводит $x$. Обозначим длину слова $x$ как $|x|$. Докажите, что $K(x) \le |x| + c$ для некоторой константы $c$.
- Предложите семейство слов $x_1, x_2, \ldots, x_n, \ldots$, где $|x_i|$ строго возрастает и выполнено $K(x_i) = o(|x_i|)$.
- Предложите семейство слов $x_1, x_2, \ldots, x_n, \ldots$, где $|x_i|$ строго возрастает и выполнено $K(x_i) = o(\log_2 |x_i|)$.
- Колмогоровская сложность и энтропия Шеннона. Для слова $x$, в котором $i$-й символ алфавита встречается $f_i$ раз обозначим как $H(x)$ величину, равную энтропии случайного источника с распределением $p_i = f_i/|x|$. Докажите, что $K(x) \le nH(x) + O(\log n)$.
- Докажите, что для любого $c > 0$ найдется слово, для которого $K(x) < c n H(x)$
- Симуляция дискретного распределения непрерывным. Рассмотрим источник, который возвращает равномерно распределенное вещественное число от 0 до 1 (для решения этой задачи достаточно формального определения, что для любого отрезка вероятность попадания значения в этот отрезок пропорциональна его длине). Мы хотим просимулировать дискретное равновероятное распределение с $n$ исходами. Как это сделать за $O(1)$? Будем считать, что тип данных double имеет достаточно точности и что операции со значениями типа double выполняются за $O(1)$.
- Пусть теперь мы хотим просимулировать с помощью непрерывного равномерного распределения дискретное распределение с распределением вероятностей $[p_1, \ldots, p_n]$. Как это сделать за $O(\log n)$? Разрешается провести предподготовку за $O(n)$.
- Схема Уолкера. Требуется просимулировать с помощью непрерывного равномерного распределения дискретное распределение с распределением вероятностей $[p_1, \ldots, p_n]$. Как это сделать за $O(1)$? Разрешается провести предподготовку за $O(n)$.