Алгоритм Касаи и др. — различия между версиями
Строка 28: | Строка 28: | ||
<tex>lcp(S_{i-1}, S_{suf[suf^{-1}[{i-1}]-1]}) = height[suf^{-1}[i-1]]</tex>, откуда <tex>height[suf^{-1}[i]] \ge height[suf^{-1}[i-1]] - 1</tex>. | <tex>lcp(S_{i-1}, S_{suf[suf^{-1}[{i-1}]-1]}) = height[suf^{-1}[i-1]]</tex>, откуда <tex>height[suf^{-1}[i]] \ge height[suf^{-1}[i-1]] - 1</tex>. | ||
}} | }} | ||
+ | |||
+ | ==Источники== | ||
+ | 1. [http://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%9A%D0%B0%D1%81%D0%B0%D0%B8 Алгоритм Касаи].<br/> | ||
+ | 2. [http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.118.8221 T.Kasai, G.Lee, H.Arimura, S.Arikawa, K.Park - Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its Application]. |
Версия 21:42, 5 мая 2011
Алгоритм Касаи (Аримуры-Арикавы-Касаи-Ли-Парка) --- алгоритм, позволяющий за линейное время вычислить значения наибольших общих префиксов для соседних циклических сдвигов строки, отсортированных в лексикографическом порядке (largest common prefix, далее
).Обозначения
данная строка.
длина наибольшего общего префикса и строк в суффиксном массиве ( и соответственно).
- обратный суффиксный массив, удовлетворяющий свойству . Может быть построен одним линейным проходом по суффиксному массиву.
Все массивы и строка имеют 0-индексацию.
Описание алгоритма
Значения
считаются для все суффиксов строки последовательно. Значение считается наивным методом за линейное время. Покажем, как вычислить , если значение известно.Теорема: |
Если , то .
Доказательство |
Доказательство: |
, . Рассмотрим суффиксный массив и позиции в нем суффиксов : так как и суффикс отличаются только первым символом, как и с , то . Так как суффикс в суффиксном массиве предшествует суффиксу , то суффикс будет предшествовать суффиксу (но необязательно будет непоредственно предыдущим), то , , , откуда . |
Источники
1. Алгоритм Касаи.
2. T.Kasai, G.Lee, H.Arimura, S.Arikawa, K.Park - Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its Application.