Полукольца и алгебры — различия между версиями
(→Алгебра: счётное => бесконечное, а под n обычно подразумевается конечное) |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
[[Математический_анализ_2_курс|на главную <<]] [[Мера на полукольце множеств|>>]] | [[Математический_анализ_2_курс|на главную <<]] [[Мера на полукольце множеств|>>]] | ||
Версия 09:32, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Полукольцо
Определение: |
Пусть
| — некоторое множество, — совокупность его подмножеств (не обязательно всех). Пара называется полукольцом, если:
Простой пример полукольца: .
Элементы этого полукольца называются ячейками.
Докажем теперь пару полезных утверждений для полуколец.
Утверждение: |
Пусть . Тогда дизъюнктны. |
Доказательство ведем индукцией по . При получаем в точности третью аксиому полукольца.Пусть теперь утверждение выполнялось для множества. Тогда получаем:Очевидно, множества из получившегося объединения дизъюнктны, как и требуется, поэтому утверждение выполняется для любого . |
Утверждение: |
Пусть . Тогда дизъюнктны. |
По доказанному выше утверждению, это объединение можно записать как: |
Алгебра
Определение: |
Пусть называется σ-алгеброй (сигма-алгеброй, счетной алгеброй), если третья аксиома усилена требованием принадлежности пересечения счетного числа множеств: | — некоторое множество, — совокупность его подмножеств. — алгебра, если:
Из данных аксиом следует, что и , поэтому алгебра замкнута относительно любых конечных теоретико-множественных операций.
σ-алгебра замкнута относительно теоретико-множественных операций с не более, чем счетным числом объектов.
Cигма-алгебры являются частным случаем обычных алгебр, которые, в свою очередь, являются частным случаем полуколец: