Построение компонент рёберной двусвязности — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
Строка 1: Строка 1:
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 
|+
 
|-align="center"
 
|'''НЕТ ВОЙНЕ'''
 
|-style="font-size: 16px;"
 
|
 
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 
 
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 
 
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 
 
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 
 
''Антивоенный комитет России''
 
|-style="font-size: 16px;"
 
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 
|-style="font-size: 16px;"
 
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 
|}
 
 
 
Построение компонент реберной двусвязности будет осуществляться с помощью [[Обход в глубину, цвета вершин|обхода в глубину]].
 
Построение компонент реберной двусвязности будет осуществляться с помощью [[Обход в глубину, цвета вершин|обхода в глубину]].
  

Текущая версия на 19:17, 4 сентября 2022

Построение компонент реберной двусвязности будет осуществляться с помощью обхода в глубину.

Двупроходный алгоритм

Первый способ найти искомые компоненты — сначала определить критерий перехода в новую компоненту реберной двусвязности, а затем покрасить вершины графа в нужные цвета.

Определим критерий перехода к новой компоненте. Воспользуемся ранее доказанной леммой. Получается — перешли по мосту, следовательно началась новая компонента.

Первый проход: запустим алгоритм для поиска мостов, чтобы посчитать две величины: [math]tin(v)[/math] и [math]up(v)[/math].

Второй проход: окрашиваем вершины, т.е. если перешли по мосту, то оказались в новой компоненте реберной двусвязности.

Псевдокод второго прохода

  • В переменной [math]\mathtt{color}[/math] хранится цвет текущей компоненты.
  • [math]\mathtt{maxColor}[/math] изначально равен [math]0[/math], что эквивалентно тому, что никакая компонента не окрашена.
function paint([math]v[/math], color):
  colors[[math]v[/math]] = color
  for [math](u, v) \in E[/math]:
    if colors[[math]u[/math]] == 0:
      if up[[math]u[/math]] > tin[[math]v[/math]]:
        maxColor++
        paint([math]u[/math], maxColor)
      else:
        paint([math]u[/math], color)
function solve():
  for [math]v \in V[/math] :
    colors[[math]v[/math]] = 0
    if not visited[[math]v[/math]]
      dfs([math]v[/math])
  maxColor = 0
  for [math]v \in V[/math] :
    if colors[[math]v[/math]] == 0:
      maxColor++
      paint([math]v[/math], maxColor)

Вершины каждой из компонент реберной двусвязности окажутся окрашенными в свой цвет.

Время работы алгоритма будет время работы двух запусков dfs, то есть [math]2 \cdot O(|V| + |E|)[/math], что есть [math] O(|V| + |E|)[/math].

Однопроходный алгоритм

Однопроходный алгоритм строится на базе алгоритма поиска мостов. Во-первых, создадим глобальный стек, и при спуске по дереву [math] dfs [/math] добавляем в него вершины. Во-вторых, когда возвращаемся назад, проверяем не является ли ребро мостом (при помощи леммы). Если это так, то все вершины, находящиеся до текущего потомка в стеке, принадлежат одной компоненте.Заметим, что эта компонента будет висячей вершиной в дереве блоков и мостов, так как обходили граф поиском в глубину. Значит, ее можно выкинуть и продолжить поиск в оставшемся графе. Действуя по аналогии в получившемся графе, найдем оставшиеся компоненты реберной двусвязности.

Псевдокод

function paint([math]v[/math]):
  maxColor++
  last = -1
  while last != [math]v[/math] and not stack.empty()
    colors[stack.top()] = maxColor
    last = stack.top()
    stack.pop()
function dfs([math] v [/math])
  time =  time + 1
  stack.push([math]v[/math])
  tin[[math]v[/math]] = time
  up[[math]v[/math]] = time
  for [math] (v, u) \in E[/math]:
    if [math](v, u)[/math] — обратное ребро
      up[[math]v[/math]] = min(up[[math]v[/math]], tin[[math]u[/math]])
    if not visited[[math]u[/math]]
      dfs([math]u[/math])
      up[[math]v[/math]] = min(up[[math]v[/math]], up[[math]u[/math]])
      if up[[math]u[/math]] > tin[[math]v[/math]] 
        paint([math]u[/math]) 

Так же после вызова dfs нужно не забыть в конце вызвать ещё раз paint.

Теперь две вершины имеют одинаковый цвет тогда и только тогда, когда они принадлежат одной компоненте реберной двусвязности.

Время работы dfs [math] O(|V| + |E|)[/math]. Покраска за [math] O(|V|) [/math]. Итоговое время работы алгоритма [math] O(|V| + |E|)[/math].

См. также

Источники информации