Материал из Викиконспекты
|
|
Строка 1: |
Строка 1: |
− | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
| |
− | |+
| |
− | |-align="center"
| |
− | |'''НЕТ ВОЙНЕ'''
| |
− | |-style="font-size: 16px;"
| |
− | |
| |
− | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
| |
− |
| |
− | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
| |
− |
| |
− | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
| |
− |
| |
− | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
| |
− |
| |
− | ''Антивоенный комитет России''
| |
− | |-style="font-size: 16px;"
| |
− | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
| |
− | |-style="font-size: 16px;"
| |
− | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
| |
− | |}
| |
− |
| |
| {{Теорема | | {{Теорема |
| |id=th2 | | |id=th2 |
Текущая версия на 19:25, 4 сентября 2022
Теорема (о подгруппах циклической группы): |
|
Доказательство: |
[math]\triangleright[/math] |
Все элементы группы [math]G[/math] с образующей [math]a[/math] представимы в виде [math]a^n[/math]. Предположим, что [math]H[/math] нетривиальна. Возьмем наименьшее ненулевое [math]n[/math], что [math]a^n\in H[/math] и положим [math]a^n=b[/math]. Пусть теперь есть некоторое [math]c\in H[/math]. Раз [math]c\in H\subseteq G[/math], то [math]c=a^m[/math] для некоторого [math]m[/math]. Имеем [math]m=k\cdot n+r[/math], где [math]r\lt n[/math]. Вместе с [math]b[/math] и [math]c[/math] [math]H[/math] содержит и [math]b^{-k}\cdot c=a^r[/math]. Поэтому если [math]r\neq 0[/math], то [math]n[/math] — не минимальное ненулевое число, что [math]a^n\in H[/math]. Таким образом, необходимо [math]r=0[/math]. Значит, все элементы [math]H[/math] представимы в виде [math]b^m[/math] для некоторого [math]m[/math], что и означает, что [math]H[/math] — циклическая группа. |
[math]\triangleleft[/math] |
Ссылки
Нормальное доказательство