Примеры неразрешимых задач: задача о замощении — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
Строка 1: Строка 1:
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 
|+
 
|-align="center"
 
|'''НЕТ ВОЙНЕ'''
 
|-style="font-size: 16px;"
 
|
 
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 
 
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 
 
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 
 
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 
 
''Антивоенный комитет России''
 
|-style="font-size: 16px;"
 
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 
|-style="font-size: 16px;"
 
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 
|}
 
 
 
[[Категория: Теория вычислимости]]
 
[[Категория: Теория вычислимости]]
  

Текущая версия на 19:41, 4 сентября 2022


Определения

Определение:
Полимино (англ. polyomino) — плоская геометрическая фигура, состоящая из [math]n[/math] одноклеточных квадратов, соединенных по сторонам.
Polyomino example.png


Определение:
Замощение плоскости (англ. tiling) — представление плоскости в виде множества непересекающихся полимино.

Пусть дана плоскость [math]S[/math] и набор полимино [math]P[/math], если [math]\exists ~ f: N \times N \to P[/math] (говорящая по клетке, какому полимино она соответствует) тогда считается, что можно замостить плоскость [math]S[/math] данным набором.

Замощение четверти плоскости

Задача:
Пусть даны некоторые типы полимино, причем экземпляров каждого типа дается бесконечно много. Верно ли, что используя любое количество полимино можно полностью замостить без пропусков и выступов четверть плоскости? Поворачивать полимино не разрешено.


Теорема:
Задача о замощении четверти плоскости полимино неразрешима.
Доказательство:
[math]\triangleright[/math]

Сведём задачу останова к данной задаче. Пусть дана машина Тьюринга [math]M =\langle \Sigma, Q, \Pi, B \in \Pi, s,\delta: Q \times \Pi \rightarrow Q \times \Pi \times \{ \leftarrow, \downarrow, \rightarrow \} \rangle[/math] и слово [math]w \in \Sigma^*[/math]. Требуется определить, остановится ли данная МТ на входе [math]w[/math].

Для того, чтобы доказать неразрешимость задачи о замощении, для заданной машины Тьюринга [math]M[/math] и слова [math]w[/math] построим набор полимино, которым можно замостить четверть плоскости, если МТ не остановится на заданном слове. Если же МТ останавливается, то четверть плоскости полученным набором замостить невозможно.

Будем эмулировать процесс выполнения МТ на входе [math]w \in \Sigma^*[/math] путем построения вертикальных рядов, каждый из которых эквивалентен конфигурации МТ на определенном этапе выполнения. Первый ряд эквивалентен начальной конфигурации МТ, а каждый следующий ряд соответствует следующей конфигурации. Говоря простым языком, каждый ряд представляет из себя "снимок" состояния машины на соответствующем этапе выполнения.

Polyomino init.png

На рисунке сверху изображены два вертикальных ряда полимино. Первый ряд соответствует МТ и слову [math]w[/math]. Первое полимино соответствует паре из первого символа и начального состояния, все остальные — символам из [math]w[/math]. Во втором ряду второе полимино соответствует паре из символа [math]w[2][/math] и состояния [math]q[/math]. То есть МТ сделала переход [math]\delta (s, w[1]) = \langle q, w[1], \rightarrow \rangle[/math].

Теперь на основе заданной МТ будем строить набор полимино, которые будут иметь следующий вид:

Polyomino gen.png

На каждой стороне такого полимино находится определенное число выступов/впадин. Каждому символу из алфавита, состоянию и паре из состояния и символа сопоставим некоторое уникальное число (можно ограничить [math]k \leqslant |\Pi| + |Q| + |\Pi \times Q| + 1[/math]) – это и будет количество выступов/впадин, находящихся на одной стороне полимино.


Сначала построим набор полимино, который задаёт начальную конфигурацию:

Polyomino start.png

где [math]*i[/math] – уникальное число для каждой смежной пары полимино из начальной конфигурации. Первое полимино характеризует начальное состояние, последующие за ним кодируют входное слово, и завершающее полимино требуется для корректного замощения оставшейся части ряда.

Далее строим полимино для всех элементов алфавита [math]c \in \Pi[/math]:

Polyomino alph.png

В нем количество впадин слева равно количеству выступов справа. Такой тип полимино передает содержимое ленты МТ следующему ряду.

Теперь построим полимино для функции перехода [math]\delta (q, c) = \langle p, d, D \rangle [/math], где [math]q \in Q, p \in Q, c \in \Pi, d \in \Pi, D\in \{\leftarrow, \downarrow, \rightarrow \}[/math]:

Polyomino delta.png

На рисунке изображены (снизу вверх) полимино соответствующие значениям [math]D = \{\leftarrow, \downarrow, \rightarrow \}[/math]. Вместе со следующим типом они эмулируют перемещение головки МТ.

Далее построим следующий тип полимино:

Polyomino delta2.png

Эти полимино получают на вход символ алфавита [math]c[/math] от предыдущего ряда и состояние [math]p[/math] от соседнего полимино, а затем передает следующему ряду пару из состояния и символа.

Построим последний тип полимино, характеризующих состояния [math]\#_Y[/math] и [math]\#_N[/math]:

Polyomino halt.png

Такое полимино имеет уникальное число выступов справа. Ни одно другое полимино из полученного набора не сможет к нему присоединиться, и процесс дальнейшего замощения будет невозможен.


Полученный алгоритм сведения получает на вход МТ и слово, а на выход выдает соответствующий им набор полимино.

Таким образом, четверть плоскости можно замостить тогда и только тогда, когда закодированная МТ не останавливается на данном входе. Иными словами, есть бесконечное количество конфигураций, не переходящих в конечное состояние. Это значит, что мы сможем замощать плоскость ряд за рядом бесконечное количество раз, что в результате замостит плоскость.

Если же МТ остановится, то и замостить четверть плоскости мы не сможем из-за того, что конечное полимино не имеет продолжения. Значит задача о замощении полимино не разрешима.
[math]\triangleleft[/math]

Замощение половины плоскости

Теорема:
Задача о замощении половины плоскости полимино неразрешима.
Доказательство:
[math]\triangleright[/math]

Будем действовать также как и предыдущем доказательстве, только одновременно будем строить еще и зеркально отраженные полимино так, чтобы их нельзя было никак соединить с изначальными.

Например, можно сделать новое количество выступов/впадин [math]k' = \mathrm{cur_k} + \mathrm{max_k}[/math], где [math]\mathrm{cur_k}[/math] — количество выступов/впадин у полимино, от которого образовалось текущее, [math]\mathrm{max_k}[/math] — максимальное число выступов/впадин у полимино в первой четверти.

Polyomino bad case.png

Сделаем так для всех полимино кроме первого столбца. Для него добавим специальное соединение, к которому подходит только зеркально отраженное полимино.

Polyomino init 2.png
[math]\triangleleft[/math]

Замощение целой плоскости

Теорема:
Задача о замощении целой плоскости полимино неразрешима.
Доказательство:
[math]\triangleright[/math]
Аналогично замощению половины плоскости.
[math]\triangleleft[/math]

См. также

Источники информации