Фибоначчиева куча — различия между версиями
Строка 1: | Строка 1: | ||
− | '''Фибоначчиевы кучи''' - модификация биномиальных куч, в которых всех операции, где не требуется удаление элементов, имеют амортизированную стоимость <tex> O(1) </tex>. Также являются сливаемыми кучами("mergeable heap"). Теоретически полезны тогда, когда операций <tex> Extract\_min </tex> и <tex> Delete </tex> значительно меньше, чем остальных. К сожалению, скрытые константы велики, так что на практике использование фибоначчиевых куч оказывается нецелесообразным: обычные <tex> k </tex> - ичные кучи на практике эффективнее. | + | '''Фибоначчиевы кучи''' - модификация [[Биномиальная_куча|биномиальных куч]], в которых всех операции, где не требуется удаление элементов, имеют амортизированную стоимость <tex> O(1) </tex>. Также являются сливаемыми кучами("mergeable heap"). Теоретически полезны тогда, когда операций <tex> Extract\_min </tex> и <tex> Delete </tex> значительно меньше, чем остальных. К сожалению, скрытые константы велики, так что на практике использование фибоначчиевых куч оказывается нецелесообразным: обычные <tex> k </tex> - ичные кучи на практике эффективнее. |
= Фибоначчиевы деревья = | = Фибоначчиевы деревья = |
Версия 19:56, 7 июня 2011
Фибоначчиевы кучи - модификация биномиальных куч, в которых всех операции, где не требуется удаление элементов, имеют амортизированную стоимость . Также являются сливаемыми кучами("mergeable heap"). Теоретически полезны тогда, когда операций и значительно меньше, чем остальных. К сожалению, скрытые константы велики, так что на практике использование фибоначчиевых куч оказывается нецелесообразным: обычные - ичные кучи на практике эффективнее.
Содержание
Фибоначчиевы деревья
Определение: |
Фибоначчиево дерево - биномиальное дерево, где у каждой вершины удалено не более одного ребенка. |
Лемма: |
Фибоначчиево дерево с вершиной степени содержит не менее ( число Фибоначчи) вершин |
Доказательство: |
Для рангов 0 и 1 соответствующие деревья содержат не менее одной вершины, .Рассмотрим дерево степени Оно в худшем случае (удален ребенок ранка Эта сумма, в свою очередь, равна ) содержит вершин. |
Поскольку
, где , то максимальная степень вершины в фибоначчиевой куча с вершинами есть .Каждая вершина
знает своего родителя ( ) и какого-нибудь своего ребенка( ).Дети любой вершины связаны в циклический двусвязный список. Такие списки удобны по двум причинам: из такого списка можно удалить вершину, и два таких списка можно связать в один за
Также в любой вершине хранятся поля
: степень вершины(число ее детей) и пометка о том, потеряла ли вершина ребенка после того, как она в последний раз сделалась чьим-либо потомком.Фибоначчиевы кучи
Определение: |
Фибоначчиева куча - набор фибоначчиевых деревьев. |
Корни фибоначчиевых деревьев, составляющих фибоначчиеву кучу, также объединены в двусвязный циклический список(корневой список, root list). В отличие от биномиальных куч, в корневом списке может находиться несколько деревьев с одной и той же степенью корня.
Доступ к куче осуществляется с помощью указателя
, указывающего на минимальную вершину в куче.Доказательство времени работы для всех операций с фибоначчиевыми кучами проводим с помощью методов амортизационного анализа.
Операции
Потенциал
Введем потенциал фибоначчиевой кучи
, как количество элементов в корневом списке ( ) прибавить удвоенное количество вершин с . На языке метода предоплаты это выглядит следующим образом: возле каждого корня лежит одна монета, а возле каждой вершины, у которой удалили ребенка, лежит две монеты.Создание кучи
Создается новый пустой корневой список, в
устанавливается значение . Реальное время работы - .Слияние
Слияние двух фибоначчиевых куч происходит просто: объединяем списки этих куч в один, релаксируем минимум. Реальное время работы -
. Амортизированное время работы - также , поскольку, при объединении двух куч в одну, потенциалы обеих куч суммируются, итоговая сумма потенциалов не изменяется, .Вставка элемента
Вставка элемента в фибоначчиеву кучу также тривиальна: создается новая куча из одного элемента и сливается с текущей. Амортизированная стоимость операции: 1 (создание кучи) + 2 (слияние куч + релаксация минимума) + 1(изменение потенциала) = 4.
Извлечение минимума
Первая рассматриваемая операция, в ходе которой меняется структура кучи. Здесь используется вспомогательная процедура Consolidate("уплотнение" кучи). Возьмем указатель на
, удалим эту вершину. Ее поддеревья (их не более, чем ) все положим в корневой список. Теперь вызываем процедуру ."Уплотнение" (Consolidate)
Данная процедура принимает кучу, и делает из нее кучу, в корневом списке которой
вершин.Для этого возьмем массив списков указателей на корни деревьев
, где - максимальная степень вершины в текущем корневом списке. Далее мы увидим, что .Затем происходит процесс, аналогичный слиянию биномиальных куч: добавляем поочередно каждый корень, смотря на его степень. Пусть она равна
Если в соответствующей ячейке A еще нету вершины, записываем текущую вершину туда. Иначе подвешиваем одно дерево к другому, и пытаемся также добавить дерево, степень корня которого уже равна . Продолжаем, пока не найдем свободную ячейку.Учетная стоимость
равна . Докажем это:Пусть изначально в корневом списке было
вершин. Тогда в ходе операции мы сделали слияний деревьев. Но эти слияний скомпенсируются уменьшением потенциала . Остальных действий будет также . Таким образом, учетная стоимость .На языке метода предоплаты: Положим у каждой вершины-ребенка удаленной монету. Это
действий. Теперь: у каждой вершины в корневом списке лежит монета, потратим ее на то, чтобы провести процедуру . Получили новый корневой список, снова раздаем монеты каждой вершине. Итого действий.Уменьшение ключа
Основная идея: хотим, чтобы учетная стоимость данной операции была
. Хотим, чтобы вершина не всплывала до корня. Для этого, при удобном случае будем вырезать поддерево полностью и перемещать его в корневой список. Итак, сам алгоритм:- Проверяем, если новое значение ключа все же меньше значения ключа родителя, то все хорошо, и мы выходим.
- Иначе, вырезаем дерево с текущей вершиной в корневой список, и производим каскадное вырезание родителя.
Вырезание вершины
При вырезании вершины мы удаляем ее из списка детей своего родителя, уменьшаем
и снимаем пометку с текущей вершины ( ).Каскадное вырезание
Перед вызовом каскадного вырезания нам известно, что перед этим мы удалили ребенка у этой вершины. Если
, то мы ставим эту пометку и заканчиваем. В противном случае, вырезаем текущую вершину, и запускаем каскадное вырезание от родителя.Докажем, что амортизированное время работы операции "уменьшение ключа" есть
. Поскольку в процедуре нет циклов, ее время работы определяется лишь количеством рекурсивных вызовов каскадного вырезания.Пусть мы вызвали процедуру каскадного вырезания
раз. Тогда вершин с пометкой стало на меньше, а в корневом списке прибавилось новых вершин. Итого, время работы будет: . Теперь, подбирая соответствующую константу в потенциале, можем добиться того, чтобы амортизированное время работы этой процедуры сталоНа языке метода предоплаты: Покажем, что взяв в начале 4 монеты, нам хватит этого для выполнения данной операции. Возьмем 4 монеты перед началом уменьшения ключа. Теперь 1 монету потратим на перенос в корневой список и релаксацию минимума, еще 1 - на то, чтобы положить монету у новой вершины в корневом списке. У нас осталось 2 монеты. Далее производим каскадное вырезание: в случае, когда
, кладем 2 монеты к этой вершине, и устанавливаем соответствующую пометку. Инвариант сохраняется.Иначе,
и там лежит 2 монеты. 2 + 2 = 4, и мы можем рекурсивно продолжить данный процесс. Оценка доказана.Удаление вершины
Удаление вершины реализуется через уменьшение ее ключа до
и последующим извлечением минимума. Амортизированное время работы: .Поскольку, ранее мы показали, что
, то соответствующие оценки доказаны.Ссылки
- Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн - Алгоритмы: построение и анализ. — М.: Издательский дом «Вильямс», 2005. — С. 1296. — ISBN 5-8459-0857-4
- http://ru.wikipedia.org/wiki/Фибоначчиева_куча
- http://www.intuit.ru/department/algorithms/dscm/7/2.html - INTUIT.ru
- Визуализаторы на rain.ifmo.ru: http://rain.ifmo.ru/cat/view.php/vis/heaps