Обсуждение:Дифференцируемые отображения в нормированных пространствах — различия между версиями
м |
(→Производная Фреше) |
||
Строка 25: | Строка 25: | ||
Кошмар в том, что у всех в конспектах одно и то же. У меня от этого когнитивный диссонанс. Он обоснован? | Кошмар в том, что у всех в конспектах одно и то же. У меня от этого когнитивный диссонанс. Он обоснован? | ||
+ | * Да, хрень какая-то, действительно. А как тогда это доказывается? --[[Участник:Dgerasimov|Дмитрий Герасимов]] 01:02, 13 июня 2011 (UTC) | ||
[[Участник:Dmitriy D.|Dmitriy D.]] 00:41, 13 июня 2011 (UTC) | [[Участник:Dmitriy D.|Dmitriy D.]] 00:41, 13 июня 2011 (UTC) |
Версия 04:02, 13 июня 2011
...все корректно,
.- ШТО --Мейнстер Д. 21:24, 9 июня 2011 (UTC)
- Лол. Если что, я заменил на то, что у меня в конспекте. Похоже на правду.
Производная Фреше
Как-то плохо согласуются следующие вещи:
Определение:
где, внимание, утверждается, что:
— производная Фреше отображения в точке
и далее утверждение:
При
получаем определение дифференциала и производной функции одной переменной.
Каким образом?? Может быть я чего-то не понимаю. Не путаются ли понятия производной и приращения(дифференциала)?
Потом это чудо:
При , получаем , где A - производная, то есть
я не про то, что тут небольшое не соответствие определению. Когда мы устремляем
, как мы делаем вывод, что ? В лучшем случае это следствие верно только для одной точки: для нуля. (И действительно, раз это два линейых оператора, то в нуле они равны нулю).Кошмар в том, что у всех в конспектах одно и то же. У меня от этого когнитивный диссонанс. Он обоснован?
- Да, хрень какая-то, действительно. А как тогда это доказывается? --Дмитрий Герасимов 01:02, 13 июня 2011 (UTC)
Dmitriy D. 00:41, 13 июня 2011 (UTC)