Теорема Оре
Версия от 08:06, 3 февраля 2012; Igor buzhinsky (обсуждение | вклад)
Теорема: |
Если и для любых двух различных несмежных вершин и неориентированного графа , то — гамильтонов граф. |
Доказательство: |
Пусть, от противного, существует граф , который удовлетворяет условию теоремы, но не является гамильтоновым графом. Будем добавлять к нему новые ребра до тех пор, пока не получим максимальный негамильтонов граф . В силу того, что мы только добавляли ребра, условие теоремы не нарушилось.Пусть несмежные вершины в полученном графе . Если добавить ребро , появится гамильтонов цикл. Тогда путь — гамильтонов.Для вершин выполненоПо принципу Дирихле всегда найдутся две смежные вершины на пути , т.е. , такие, что существует ребро и реброДействительно, пусть { } и { }Имеем: , ноТогда Получили противоречие, т.к. т.е. и — гамильтонов цикл. |
Источники
1. Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы. ISBN 978-5-8114-1068-2
2. Харари — Теория графов. ISBN 978-5-397-00622-4