Использование обхода в глубину для топологической сортировки

Материал из Викиконспекты
Перейти к: навигация, поиск

Топологическая сортировка ориентированного ациклического графа [math]G = (V, E)[/math] представляет собой такое линейное упорядочение всех его вершин, что если [math](u, v) \in E(G)[/math], то [math]u[/math] при таком упорядочении располагается до [math]v\ [/math] (если граф не является ацикличным, такая сортировка невозможна).

Постановка задачи

Теорема:
[math]G[/math] — ациклический ориентированный граф, тогда [math]\exists \ \varphi : V \to \{ 1..n \} , uv \in E \Rightarrow \varphi (u) \lt \varphi (v) [/math]
Доказательство:
[math]\triangleright[/math]

Определим [math]leave[u][/math] как порядковый номер окраски вершины [math]u[/math] в черный цвет в результате работы алгоритма [math]dfs[/math], см. Обход в глубину, цвета вершин. Рассмотрим функцию [math]\varphi = n + 1 - leave[u] [/math]. Очевидно, что такая функция подходит под критерий функции [math]\varphi[/math] из условия теоремы, если выполняется следующее утверждение:

Утверждение:
[math]G[/math] — ациклический ориентированный граф, тогда [math]uv \in E \Rightarrow leave[u] \gt leave[v][/math]
[math]\triangleright[/math]
Рассмотрим произвольное ребро [math](u, v)[/math], исследуемое процедурой [math]dfs[/math]. При исследовании вершина [math]v[/math] не может быть серой, так как серые вершины в процессе работы [math]dfs[/math] всегда образуют простой путь в графе, и факт попадания в серую вершину [math]v[/math] означает, что в графе есть цикл из серых вершин, что противоречит условию утверждения.
[math]\triangleleft[/math]
[math]\triangleleft[/math]