Алгоритм Флойда
Алгоритм Флойда (алгоритм Флойда–Уоршелла) — алгоритм нахождения длин кратчайших путей между всеми парами вершин во взвешенном ориентированном графе. Работает корректно, если в графе нет циклов отрицательной величины, а в случае, когда такой цикл есть, позволяет найти хотя бы один такой цикл. Этот алгоритм работает в течение времени и использует памяти. Разработан в 1962 году.
Содержание
Алгоритм
Постановка задачи
Дан взвешенный ориентированный граф ; , в котором вершины пронумерованы от до . Требуется найти матрицу кратчайших расстояний , в которой элемент либо равен длине кратчайшего пути из в , либо равен , если вершина не достижима из .
Описание
Обозначим длину кратчайшего пути между вершинами и , содержащего, помимо и , только вершины из множества как , .
На каждом шаге алгоритма, мы будем брать очередную вершину (пусть её номер — ) и для всех пар вершин и вычислять . То есть, если кратчайший путь из в , содержащий только вершины из множества , проходит через вершину , то кратчайшим путем из в является кратчайший путь из в , объединенный с кратчайшим путем из в . В противном случае, когда этот путь не содержит вершины , кратчайший путь из в , содержащий только вершины из множества является кратчайшим путем из в , содержащим только вершины из множества .
Код (в первом приближении)
# Инициализация # Основная часть for i in {1..n}: for u in {1..n}: for v in {1..n}:
В итоге получаем, что матрица и является искомой матрицей кратчайших путей, поскольку содержит в себе длины кратчайших путей между всеми парами вершин, имеющих в качестве промежуточных вершин вершины из множества , что есть попросту все вершины графа. Такая реализация работает за времени и использует памяти.
Код (окончательный)
Утверждается, что можно избавиться от одной размерности в массиве , т.е. использовать двумерный массив . В процессе работы алгоритма поддерживается инвариант , а, поскольку, после выполнения работы алгоритма , то тогда будет выполняться и .
| Утверждение: | 
В течение работы алгоритма Флойда выполняются неравенства: .  | 
|  
 После инициализации все неравенства, очевидно, выполняются. Далее, массив может измениться только в строчке 5. Докажем оба неравенства по индукции по итерациям алгоритма: 
  | 
# Инициализация # Основная часть for i in {1..n}: for u in {1..n}: for v in {1..n}:
Данная реализация работает за время , но требует уже памяти. В целом, алгоритм Флойда очень прост, и, поскольку в нем используются только простые операции, константа, скрытая в определении весьма мала.
Пример работы
    | 
    | 
    | 
    | 
  
 | 
Вывод кратчайшего пути
Алгоритм Флойда легко модифицировать таким образом, чтобы он возвращал не только длину кратчайшего пути, но и сам путь. Для этого достаточно завести дополнительный массив , в котором будет храниться номер вершины, в которую надо пойти следующей, чтобы дойти из в по кратчайшему пути.
Модифицированный алгоритм
 # Инициализация
 d = w
 t[u][v] = v если есть ребро uv
 # Основная часть
 for i in {1..n}:
   for u in {1..n}:
     for v in {1..n}:
       if (d[u][i] + d[i][v]) < d[u][v]: 
         d[u][v] = d[u][i] + d[i][v]
         next[u][v] = next[u][i]
 # Вывод кратчайшего пути
 def get_shortest_path(u, v):
   if d[u][v] == inf:
       raise NoPath # Из u в v пути нет
   c = u
   while c != v:
     print c
     c = next[c][v]
   print v
Литература
- Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)
 





