Теорема Хватала
| Определение: |
| Пусть неориентированный граф имеет вершин: . Пусть и вершины графа упорядочены таким образом, что . Последовательность называют последовательностью степеней графа . |
| Лемма (О добавлении ребра в граф): |
Пусть неориентированный граф получен из неориентированного графа добавлением одного нового ребра . Тогда последовательность степеней графа мажорируется последовательностью степеней графа . |
| Доказательство: |
|
Замечание: Если в неубывающей последовательности увеличить на единицу число , а затем привести последовательность к неубывающему виду, переставив число на положенное место, то исходная последовательность будет мажорироваться полученной. При добавлении в граф ребра , степени вершин и увеличатся на единицу. Для доказательства леммы, дважды воспользуемся замечанием. Значит, последовательность степеней полученного графа мажорирует последовательность степеней исходного, q.e.d. |
| Теорема (Хватал): | ||||||||||||||
Пусть:
Тогда если верна импликация: | ||||||||||||||
| Доказательство: | ||||||||||||||
|
Для доказательства теоремы, докажем 3 леммы.
Приведем доказательство от противного. Пусть существует граф с числом вершин , удовлетворяющий , но негамильтонов. Будем добавлять в него рёбра до тех пор, пока не получим максимально возможный негамильтонов граф (то есть добавление еще одного ребра сделает граф гамильтоновым). По лемме о добавлении ребра и лемме №3 импликация остается верной для графа . Очевидно, что граф гамильтонов при . Будем считать максимальным негамильтоновым остовным подграфом графа . Выберем две несмежные вершины и графа , такие что — максимально. Будем считать, что . Добавив к новое ребро , получим гамильтонов граф . Рассмотрим гамильтонов цикл графа : в нём обязательно присутствует ребро . Отбрасывая ребро , получим гамильтонову -цепь в графе : . Пусть . Докажем, что , иначе в графе есть гамильтонов цикл.
Из определений и следует, что , поэтому , то есть . Так как , ни одна вершина не смежна с (для ). В силу выбора и , получим, что . Положим, что . Тогда имеется по крайней мере вершин, степень которых не превосходит k. По лемме №1, выполняется: . Исходя из , получаем: . По второй лемме, имеется по крайней мере вершин, степень которых не меньше . Так как , то вершина может быть смежна максимум с из этих вершин. Значит, существует вершина , не являющаяся смежной с и для которой . Тогда получим, что , что противоречит выбору и . Значит, предположение неверно, q.e.d. | ||||||||||||||
Литература
- Асанов М., Баранский В., Расин В.: Дискретная математика: Графы, матроиды, алгоритмы